One contribution of 17 to a theme issue 'From social brains to social robots: applying neurocognitive insights to human -robot interaction'.We present a novel functional magnetic resonance imaging paradigm for second-person neuroscience. The paradigm compares a human social interaction (human-human interaction, HHI) to an interaction with a conversational robot (human-robot interaction, HRI). The social interaction consists of 1 min blocks of live bidirectional discussion between the scanned participant and the human or robot agent. A final sample of 21 participants is included in the corpus comprising physiological (blood oxygen leveldependent, respiration and peripheral blood flow) and behavioural (recorded speech from all interlocutors, eye tracking from the scanned participant, face recording of the human and robot agents) data. Here, we present the first analysis of this corpus, contrasting neural activity between HHI and HRI. We hypothesized that independently of differences in behaviour between interactions with the human and robot agent, neural markers of mentalizing (temporoparietal junction (TPJ) and medial prefrontal cortex) and social motivation (hypothalamus and amygdala) would only be active in HHI. Results confirmed significantly increased response associated with HHI in the TPJ, hypothalamus and amygdala, but not in the medial prefrontal cortex. Future analysis of this corpus will include fine-grained characterization of verbal and non-verbal behaviours recorded during the interaction to investigate their neural correlates.This article is part of the theme issue 'From social brains to social robots: applying neurocognitive insights to human -robot interaction'.
Abstract. The lack of large-scale, freely available and durable lexical resources, and the consequences for NLP, is widely acknowledged but the attempts to cope with usual bottlenecks preventing their development often result in dead-ends. This article introduces a language-independent, semi-automatic and endogenous method for enriching lexical resources, based on collaborative editing and random walks through existing lexical relationships, and shows how this approach enables us to overcome recurrent impediments. It compares the impact of using different data sources and similarity measures on the task of improving synonymy networks. Finally, it defines an architecture for applying the presented method to Wiktionary and explains how it has been implemented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.