We describe a new method to achieve point spread function (PSF) subtractions for highcontrast imaging using Principal Component Analysis (PCA) that is applicable to both point sources or extended objects (disks). Assuming a library of reference PSFs, a Karhunen-Loève transform of theses references is used to create an orthogonal basis of eigenimages, on which the science target is projected. For detection this approach provides comparable suppression to the Locally Optimized Combination of Images (LOCI) algorithm, albeit with increased robustness to the algorithm parameters and speed enhancement. For characterization of detected sources the method enables forward modeling of astrophysical sources. This alleviates the biases in the astrometry and photometry of discovered faint sources, which are usually associated with LOCIbased PSF subtractions schemes. We illustrate the algorithm performance using archival Hubble Space Telescope (HST) images, but the approach may also be considered for ground-based data acquired with Angular Differential Imaging (ADI) or integral-field spectrographs (IFS).
BANYAN Σ is a new Bayesian algorithm to identify members of young stellar associations within 150 pc of the Sun. It includes 27 young associations with ages in the range ∼1–800 Myr, modeled with multivariate Gaussians in six-dimensional (6D) XYZUVW space. It is the first such multi-association classification tool to include the nearest sub-groups of the Sco-Cen OB star-forming region, the IC 2602, IC 2391, Pleiades and Platais 8 clusters, and the ρ Ophiuchi, Corona Australis, and Taurus star formation regions. A model of field stars is built from a mixture of multivariate Gaussians based on the Besançon Galactic model. The algorithm can derive membership probabilities for objects with only sky coordinates and proper motion, but can also include parallax and radial velocity measurements, as well as spectrophotometric distance constraints from sequences in color–magnitude or spectral type–magnitude diagrams. BANYAN Σ benefits from an analytical solution to the Bayesian marginalization integrals over unknown radial velocities and distances that makes it more accurate and significantly faster than its predecessor BANYAN II. A contamination versus hit rate analysis is presented and demonstrates that BANYAN Σ achieves a better classification performance than other moving group tools available in the literature, especially in terms of cross-contamination between young associations. An updated list of bona fide members in the 27 young associations, augmented by the Gaia-DR1 release, as well as all parameters for the 6D multivariate Gaussian models for each association and the Galactic field neighborhood within 300 pc are presented. This new tool will make it possible to analyze large data sets such as the upcoming Gaia-DR2 to identify new young stars. IDL and Python versions of BANYAN Σ are made available with this publication, and a more limited online web tool is available at http://www.exoplanetes.umontreal.ca/banyan/banyansigma.php.
Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10(-6) and an effective temperature of 600 to 750 kelvin. For this age and luminosity, "hot-start" formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the "cold-start" core-accretion process that may have formed Jupiter.
The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffractionsuppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 10 6 at 0.75 arcseconds and 10 5 at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of 9:0 +0:8 −0:4 AU near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017.high-contrast imaging | extreme adaptive optics | debris disks D irect imaging is a powerful complement to indirect exoplanet detection techniques. In direct imaging, the planet is spatially resolved from its star, allowing it to be independently studied. This capability opens up new regions of parameter space, including sensitivity to planets at >5 AU. It also allows spectroscopic analysis of the light emitted or reflected by the planet to determine its composition (1, 2) and astrometry to determine the full Keplerian orbital elements (3, 4).Imaging planets is extremely challenging-Jupiter is 10 9 times fainter than our sun in reflected visible light. Younger extrasolar planets are more favorable targets. During their formation, planets are heated by the release of gravitational potential energy. Depending on the exact formation process and initial conditions, a 4-Jupiter mass ðM J Þ planet at an age of 10 million years could have a luminosity between 10 −6 and 2 × 10 −5 L ⊙ (5), but this is still a formidable contrast ratio. To overcome this, astronomers combined large telescopes (to reduce the impact of diffraction), adaptive optics (to correct for phase errors induced by atmospheric turbulence), and sophisticated image processing (6, 7). This recipe in various combinations had achieved several notable successes (8-12). However, the rate of these discoveries remains low (13-15) in part because the number of suitable young stars in the solar neighborhood is low, and for all but the closest stars, such detection is limited to >20 AU, where planets may be relatively rare. To move beyond this limited sample, dedicated instruments are needed that are designed specifically for high-contrast imaging. One such instrument is the Gemini Planet Imager (GPI). GPI is a fully optimized high-con...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.