Insect diversity represents about 60% of the estimated million-and-a-half described eukaryotic species worldwide, yet comprehensive and well-resolved intra-ordinal phylogenies are still lacking for the majority of insect groups. This is the case especially for the most species-rich insect group, the beetles (Coleoptera), a group for which less than 4% of the known species have had their DNA sequenced. In this study, we reconstruct the first higher level phylogeny based on DNA sequence data for the species-rich darkling beetles, a family comprising at least 20 000 species. Although amongst all families of beetles Tenebrionidae ranks seventh in terms of species diversity, the lack of knowledge on the phylogeny and systematics of the group is such that its monophyly has been questioned (not to mention those of the subfamilies and tribes contained within it). We investigate the evolutionary history of Tenebrionidae using multiple phylogenetic inference methods (Bayesian inference, maximum likelihood and parsimony) to analyse a dataset consisting of eight gene fragments across 404 taxa (including 250 tenebrionid species). Although the resulting phylogenetic framework only encompasses a fraction of the known tenebrionid diversity, it provides important information on their systematics and evolution. Whatever the methods used, our results provide strong support for the monophyly of the family, and highlight the likely paraphyletic or polyphyletic nature of several important tenebrionid subfamilies and tribes, notably the polyphyletic subfamilies Diaperinae and Tenebrioninae that clearly require substantial revision in the future. Some interesting associations in several groups are also revealed by the phylogenetic analyses, such as the pairing of Aphtora Bates with Phrenapatinae. Furthermore this study advances our knowledge of the evolution of the group, providing novel insights into much-debated theories, such as the apparent relict distribution of the tribe Elenophorini.
BackgroundAs attested by the fossil record, Cretaceous environmental changes have significantly impacted the diversification dynamics of several groups of organisms. A major biome turnover that occurred during this period was the rise of angiosperms starting ca. 125 million years ago. Though there is evidence that the latter promoted the diversification of phytophagous insects, the response of other insect groups to Cretaceous environmental changes is still largely unknown. To gain novel insights on this issue, we assess the diversification dynamics of a hyperdiverse family of detritivorous beetles (Tenebrionidae) using molecular dating and diversification analyses.ResultsAge estimates reveal an origin after the Triassic-Jurassic mass extinction (older than previously thought), followed by the diversification of major lineages during Pangaean and Gondwanan breakups. Dating analyses indicate that arid-adapted species diversified early, while most of the lineages that are adapted to more humid conditions diversified much later. Contrary to other insect groups, we found no support for a positive shift in diversification rates during the Cretaceous; instead there is evidence for an 8.5-fold increase in extinction rates that was not compensated by a joint increase in speciation rates.ConclusionsWe hypothesize that this pattern is better explained by the concomitant reduction of arid environments starting in the mid-Cretaceous, which likely negatively impacted the diversification of arid-adapted species that were predominant at that time.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-014-0220-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.