International audienceNumerical programs with IEEE 754 floating-point computations may suffer from inaccuracies since finite precision arithmetic is an approximation of real arithmetic. Solutions that reduce the loss of accuracy are available as, for instance, compensated algorithms, more precise computation with double-double or similar libraries. Our objective is to automatically improve the numerical quality of a numerical program with the smallest impact on its performances. We define and implement source code transformation to derive automatically compensated programs. We present several experimental results to compare the transformed programs and existing solutions. The transformed programs are as accurate and efficient than the implementations of compensated algorithms when the latter exist
International audienceNumerical programs with IEEE 754 floating-point computations may suffer from inaccuracies, since finite precision arithmetic is an approximation of real arithmetic. Solutions that reduce the loss of accuracy are available, such as, compensated algorithms or double-double precision floating-point arithmetic. Our goal is to automatically improve the numerical quality of a numerical program with the smallest impact on its performance. We define and implement source code transformations in order to derive automatically compensated programs. We present several experimental results to compare the transformed programs and existing solutions. The transformed programs are as accurate and efficient as the implementations of compensated algorithms when the latter exist. Furthermore, we propose some transformation strategies allowing us to improve partially the accuracy of programs and to tune the impact on execution time. Trade-offs between accuracy and performance are assured by code synthesis. Experimental results show that user-defined trade-offs are achievable in a reasonable amount of time, with the help of the tools we present in the paper
This paper presents some work in progress on the development of fast and accurate support for complex floatingpoint arithmetic on embedded processors. Focusing on the case of multiplication, we describe algorithms and implementations for computing both the real and imaginary parts with high relative accuracy. We show that, in practice, such accuracy guarantees can be achieved with reasonable overhead compared with conventional algorithms (which are those offered by current implementations and for which the real or imaginary part of a product can have no correct digit at all). For example, the average execution-time overheads when computing an FFT on the ARM Cortex-A53 and-A57 processors range from 1.04x to 1.17x only, while arithmetic costs suggest overheads from 1.5x to 1.8x.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.