ZSM-5 zeolite in H + form with an average pore size of 1.2 nm was used for aqueous phase dehydration of xylose to furfural at low temperatures; that is, from 413 to 493 K. The selectivity in furfural increased with the temperature to a value of 473 K. Beyond this temperature, condensation reactions were significant and facilitated by the intrinsic structure of ZSM-5. A reaction mechanism that included isomerization of xylose to lyxose, dehydration of lyxose and xylose to furfural, fragmentation of furfural to organic acids, oligomerization of furfural to bi-and tridimensional furilic species, and complete dehydration of organic acids to carbonaceous deposits was developed, and the associated kinetic parameters were estimated. The rate of furfural production was found to be more sensitive to temperature than the rates of side reactions, with an estimated activation energy of 32.1 kcal/mol. This value correlated well with data in the literature obtained by homogeneous catalytic dehydration.
A safe, straightforward, and atom economic approach for the oxidation of aliphatic aldehydes to the corresponding carboxylic acids within a continuous flow reactor is reported. Typically, the reaction is performed at room temperature using 5 bar of oxygen in PFA tubing and does require neither additional catalysts nor radical initiators except for those already contained in the starting materials. In some cases, a catalytic amount of a Mn(II) catalyst is added. Such a flow process may prove to be a valuable alternative to traditionally catalyzed aerobic processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.