The ring of integers and the ring of polynomials over a finite field share a lot of properties. Using a bounded number of polynomial coefficients, any polynomial can be decomposed as a linear combination of powers of a non-constant polynomial P playing the role of the base of the numeration. Having in mind the theorem of Cobham from 1969 about recognizable sets of integers, it is natural to study P -recognizable sets of polynomials. Based on the results obtained in the Ph.D. thesis of the second author, we study the logical characterization of such sets and related properties like decidability of the corresponding first-order theory.
Under some mild assumptions, we study the state complexity of the trim minimal automaton accepting the greedy representations of the multiples of m ≥ 2 for a wide class of linear numeration systems. As an example, the number of states of the trim minimal automaton accepting the greedy representations of m N in the Fibonacci system is exactly 2m 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.