This paper proposes to explicate theoretical equivalence by supplementing formal equivalence criteria with preservation conditions concerning interpretation. I argue that both the internal structure of models and choices of morphisms are aspects of formalisms that are relevant when it comes to their interpretation. Hence, a formal criterion suitable for being supplemented with preservation conditions concerning interpretation should take these two aspects into account. The two currently most important criteria-generalised definitional equivalence (Morita equivalence) and categorical equivalence-are not optimal in this respect. I put forward a criterion that takes both aspects into account: the criterion of definable categorical equivalence.
Several philosophers of science construe models of scientific theories as set-theoretic structures. Some of them moreover claim that models should not be construed as structures in the sense of model theory because the latter are languagedependent. I argue that if we are ready to construe models as set-theoretic structures (strict semantic view), we could equally well construe them as model-theoretic structures of higher-order logic (liberal semantic view). I show that every family of set-theoretic structures has an associated language of higher-order logic and an up to signature isomorphism unique model-theoretic counterpart, which is able to serve the same purposes. This allows to carry over every syntactic criterion of equivalence for theories in the sense of the liberal semantic view to theories in the sense of the strict semantic view. Taken together, these results suggest that the recent dispute about the semantic view and its relation to the syntactic view can be resolved.
Causal set theory and the theory of linear structures (which has recently been developed by Tim Maudlin as an alternative to standard topology) share some of their main motivations. In view of that, I raise and answer the question how these two theories are related to each other and to standard topology. I show that causal set theory can be embedded into Maudlin's more general framework and I characterise what Maudlin's topological concepts boil down to when applied to discrete linear structures that correspond to causal sets. Moreover, I show that all topological aspects of causal sets that can be described in Maudlin's theory can also be described in the framework of standard topology. Finally, I discuss why these results are relevant for evaluating Maudlin's theory. The value of this theory depends crucially on whether it is true that (a) its conceptual framework is as expressive as that of standard topology when it comes to describing well-known continuous as well as discrete models of spacetime and (b) it is even more expressive or fruitful when it comes to analysing topological aspects of discrete structures that are intended as models of spacetime. On the one hand, my theorems support (a): the theory is rich enough to incorporate causal set theory and its definitions of topological notions yield a plausible outcome in the case of causal sets. On the other hand, the results undermine (b): standard topology, too, has the conceptual resources to capture those topological aspects of causal sets that are analysable within Maudlin's framework. This fact poses a challenge for the proponents of Maudlin's theory to prove it fruitful.
Christian List [24] has recently proposed a category-theoretic model of a system of levels, applying it to various pertinent metaphysical questions. We modify and extend this framework to correct some minor defects and better adapt it to application in philosophy of science. This includes a richer use of category theoretic ideas and some illustrations using social choice theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.