LiDAR depth maps provide environmental guidance in a variety of applications. However, such depth maps are typically sparse and insufficient for complex tasks such as autonomous navigation. State of the art methods use image guided neural networks for dense depth completion. We develop a guided convolutional neural network focusing on gathering dense and valid information from sparse depth maps. To this end, we introduce a novel layer with spatially variant and content-depended dilation to include additional data from sparse input. Furthermore, we propose a sparsity invariant residual bottleneck block. We evaluate our Dense Validity Mask Network (DVMN) on the KITTI depth completion benchmark and achieve state of the art results. At the time of submission, our network is the leading method using sparsity invariant convolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.