letters to nature NATURE | VOL 399 | 10 JUNE 1999 | www.nature.com 579 between 270 and 4,000 ms after target onset) and to ignore changes in the distractor. Failure to respond within a reaction-time window, responding to a change in the distractor or deviating the gaze (monitored with a scleral search coil) by more than 1Њ from the fixation point caused the trial to be aborted without reward. The change in the target and distractors was selected so as to be challenging for the animal. In experiments 1 and 2 the animal correctly completed, on average, 79% of the trials, broke fixation in 11%, might have responded to the distractor stimulus in 6% and responded too early or not at all in 5% of the trials. In Experiment 3 the corresponding values are 78, 13%, 8% and 2%. In none of the three experiments was there a difference between the performances for the two possible targets. Differences between average eye positions during trials where one or the other stimulus was the target were very small, with only an average shift of 0.02Њ in the direction of the shift of position between the stimuli. Only correctly completed trials were considered. Firing rates were determined by computing the average neuronal response across trials for 1,000 ms starting 200 ms after the beginning of the target stimulus movement. Tuning curves. Tuning curves were derived by fitting the responses to the 12 directions presented with gaussian functions: r null þ dirGain ϫ exp ð Ϫ 0:5ءðdir Ϫ prefdirÞ 2 =width 2 Þ . The four parameters of a gaussian curve capture the four features of a direction-selective cell: preferred direction ( prefdir), response to the anti-preferred direction (r null ), the directional gain (dirGain; the maximal response modulation) and the selectivity or tuning width (width; the range of directions the neuron responds to).
Lepidoptera (butterflies and moths) represent one of the most diverse animals groups. Yet, the phylogeny of advanced ditrysian Lepidoptera, accounting for about 99 per cent of lepidopteran species, has remained largely unresolved. We report a rigorous and comprehensive analysis of lepidopteran affinities. We performed phylogenetic analyses of 350 taxa representing nearly 90 per cent of lepidopteran families. We found Ditrysia to be a monophyletic taxon with the clade Tischerioidea þ Palaephatoidea being the sister group of it. No support for the monophyly of the proposed major internested ditrysian clades, Apoditrysia, Obtectomera and Macrolepidoptera, was found as currently defined, but each of these is supported with some modification. The monophyly or near-monophyly of most previously identified lepidopteran superfamilies is reinforced, but several species-rich superfamilies were found to be para-or polyphyletic. Butterflies were found to be more closely related to 'microlepidopteran' groups of moths rather than the clade Macrolepidoptera, where they have traditionally been placed. There is support for the monophyly of Macrolepidoptera when butterflies and Calliduloidea are excluded. The data suggest that the generally short diverging nodes between major groupings in basal non-tineoid Ditrysia are owing to their rapid radiation, presumably in correlation with the radiation of flowering plants.
. A new molecular phylogeny offers hope for a stable family level classification of the Noctuoidea (Lepidoptera). -Zoologica Scripta, 40, 158-173. To examine the higher level phylogeny and evolutionary affinities of the megadiverse superfamily Noctuoidea, an extensive molecular systematic study was undertaken with special emphasis on Noctuidae, the most controversial group in Noctuoidea and arguably the entire Lepidoptera. DNA sequence data for one mitochondrial gene (cytochrome oxidase subunit I) and seven nuclear genes (Elongation Factor-1a, wingless, Ribosomal protein S5, Isocitrate dehydrogenase, Cytosolic malate dehydrogenase, Glyceraldehyde-3-phosphate dehydrogenase and Carbamoylphosphate synthase domain protein) were analysed for 152 taxa of principally type genera ⁄ species for family group taxa. Data matrices (6407 bp total) were analysed by parsimony with equal weighting and model-based evolutionary methods (maximum likelihood), which revealed a new high-level phylogenetic hypothesis comprising six major, well-supported lineages that we here interpret as families: Oenosandridae, Notodontidae, Erebidae, Nolidae, Euteliidae and Noctuidae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.