Abstract:The timely estimation of crop biomass and nitrogen content is a crucial step in various tasks in precision agriculture, for example in fertilization optimization. Remote sensing using drones and aircrafts offers a feasible tool to carry out this task. Our objective was to develop and assess a methodology for crop biomass and nitrogen estimation, integrating spectral and 3D features that can be extracted using airborne miniaturized multispectral, hyperspectral and colour (RGB) cameras. We used the Random Forest (RF) as the estimator, and in addition Simple Linear Regression (SLR) was used to validate the consistency of the RF results. The method was assessed with empirical datasets captured of a barley field and a grass silage trial site using a hyperspectral camera based on the Fabry-Pérot interferometer (FPI) and a regular RGB camera onboard a drone and an aircraft. Agricultural reference measurements included fresh yield (FY), dry matter yield (DMY) and amount of nitrogen. In DMY estimation of barley, the Pearson Correlation Coefficient (PCC) and the normalized Root Mean Square Error (RMSE%) were at best 0.95% and 33.2%, respectively; and in the grass DMY estimation, the best results were 0.79% and 1.9%, respectively. In the nitrogen amount estimations of barley, the PCC and RMSE% were at best 0.97% and 21.6%, respectively. In the biomass estimation, the best results were obtained when integrating hyperspectral and 3D features, but the integration of RGB images and 3D features also provided results that were almost as good. In nitrogen content estimation, the hyperspectral camera gave the best results. We concluded that the integration of spectral and high spatial resolution 3D features and radiometric calibration was necessary to optimize the accuracy.
Abstract:There is currently high interest in developing automated methods to assist the updating of map databases. This study presents methods for automatic detection of buildings and changes in buildings from airborne laser scanner and digital aerial image data and shows the potential usefulness of the methods with thorough experiments in a 5 km 2 suburban study area. 96% of buildings larger than 60 m 2 were correctly detected in the building detection. The completeness and correctness of the change detection for buildings larger than 60 m 2 were about 85% (including five classes). Most of the errors occurred in small or otherwise problematic buildings.
Abstract:The transition from film imaging to digital imaging in photogrammetric data capture is opening interesting possibilities for photogrammetric processes. A great advantage of digital sensors is their radiometric potential. This article presents a state-of-the-art review on the radiometric aspects of digital photogrammetric images. The analysis is based on a literature research and a questionnaire submitted to various interest groups related to the photogrammetric process. An important contribution to this paper is a characterization of the photogrammetric image acquisition and image product generation systems. The questionnaire revealed many weaknesses in current processes, but the future prospects of radiometrically quantitative photogrammetry are promising.
Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK).
Comprehensive field-testing and calibration of digital photogrammetric systems are essential to characterize their performance, to improve them, and to be able to use them for optimal results. The radiometric, spectral, spatial, and geometric properties of digital systems require calibration and testing. The Finnish Geodetic Institute has maintained a permanent test field for geometric, radiometric, and spatial resolution calibration and testing of high-resolution airborne and satellite imaging systems in Sjökulla since 1994. The special features of this test field are permanent resolution and reflectance targets made of gravel. The Sjökulla test field with some supplementary targets is a prototype for a future photogrammetric field calibration site. This article describes the Sjökulla test field and its construction and spectral properties. It goes on to discuss targets and methods for system testing and calibration, and highlights the calibration and testing of digital photogrammetric systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.