Abstract. Ensemble prediction is an indispensable tool in modern numerical weather prediction (NWP). Due to its complex data flow, global medium-range ensemble prediction has almost exclusively been carried out by operational weather agencies to date. Thus, it has been very hard for academia to contribute to this important branch of NWP research using realistic weather models. In order to open ensemble prediction research up to the wider research community, we have recreated all 50+1 operational IFS ensemble initial states for OpenIFS CY43R3. The dataset (OpenEnsemble 1.0) is available for use under a Creative Commons licence and is downloadable from an https server. The dataset covers 1 year (December 2016 to November 2017) twice daily. Downloads in three model resolutions (TL159, TL399, and TL639) are available to cover different research needs. An open-source workflow manager, called OpenEPS, is presented here and used to launch ensemble forecast experiments from the perturbed initial conditions. The deterministic and probabilistic forecast skill of OpenIFS (cycle 40R1) using this new set of initial states is comprehensively evaluated. In addition, we present a case study of Typhoon Damrey from year 2017 to illustrate the new potential of being able to run ensemble forecasts outside of major global weather forecasting centres.
Abstract. Ensemble prediction is an indispensable tool of modern numerical weather prediction (NWP). Due to its complex data flow, global medium-range ensemble prediction has so far remained exclusively as a duty of operational weather agencies. It has been very hard for academia therefore to be able to contribute to this important branch of NWP research using realistic weather models. In order to open up the ensemble prediction research for a wider research community, we have recreated all 50+1 operational IFS ensemble initial states for OpenIFS CY43R3. The dataset (OpenEnsemble 1.0) is available for use under a Creative Commons license and is downloadable from an https-server. The dataset covers one year (December 2016 to November 2017) twice daily. Downloads in three model resolutions (TL159, TL399 and TL639) are available to cover different research needs. An open-source workflow manager, called OpenEPS, is presented here and used to launch ensemble forecast experiments from the perturbed initial conditions. The deterministic and probabilistic forecast skill of OpenIFS (cycle 40R1) using this new set of initial states is comprehensively evaluated. In addition, we present a case study of typhoon Damrey from year 2017 to illustrate the new potential of being able to run ensemble forecasts outside major global weather forecasting centres.
In ensemble weather prediction systems, ensemble spread is generated using uncertainty representations for initial and boundary values as well as for model formulation. The ensuing ensemble spread is thus regulated through what we call ensemble spread parameters. The task is to specify the parameter values such that the ensemble spread corresponds to the prediction skill of the ensemble mean – a prerequisite for a reliable prediction system. In this paper, we present an algorithmic approach suitable for this task consisting of a differential evolution algorithm with filter likelihood providing evidence. The approach is demonstrated using an idealized ensemble prediction system based on the Lorenz–Wilks system. Our results suggest that it might be possible to optimize the spread parameters without manual intervention.
Abstract. Algorithmic model tuning is a promising approach to yield the best possible forecast performance of multi-scale multi-phase atmospheric models once the model structure is fixed. The problem is to what degree we can trust algorithmic model tuning. We approach the problem by studying the convergence of this process in a semi-realistic case. Let M(x, θ) denote the time evolution model, where x and θ are the initial state and the default model parameter vectors, respectively. A necessary condition for an algorithmic tuning process to converge is that θ is recovered when the tuning process is initialised with perturbed model parameters θ′ and the default model forecasts are used as pseudo-observations. The aim here is to gauge which conditions are sufficient in a semi-realistic test setting to obtain reliable results and thus build confidence on the tuning in fully realistic cases. A large set of convergence tests is carried in semi-realistic cases by applying two different ensemble-based parameter estimation methods and the atmospheric forecast model of the Integrated Forecasting System (OpenIFS) model. The results are interpreted as general guidance for algorithmic model tuning, which we successfully tested in a more demanding case of simultaneous estimation of eight OpenIFS model parameters.
<p>Algorithmic model tuning is a promising approach to yield the best possible performance of multiscale multi-phase atmospheric models once the model structure is fixed. We are curious about to what degree one can trust the algorithmic tuning process. We approach the problem by studying the convergence of this process in a semi-realistic case. Let us denote <strong>M</strong>(<strong>x</strong><sub><strong>0</strong></sub>;<strong>&#952;</strong><sub><strong>d</strong></sub>) as the default model, where <strong>x</strong><sub><strong>0</strong></sub> and <strong>&#952;</strong><sub><strong>d</strong></sub> are the initial state and default model parameter vectors, respectively. A necessary condition for an algorithmic tuning process to converge in a fully-realistic case is that the default model is recovered if the tuning process is initialised with perturbed model parameters <strong>&#952;</strong> and the default model forecasts are used as pseudo-observations. In this paper we study the circumstances where this condition is valid by carrying out a large set of convergence tests using two different tuning methods and the OpenIFS model. These tests are interpreted as guidelines for algorithmic model tuning applications.</p><p>The results of this study can be used as recipe for maximising efficiency of algorithmic tuning. In the convergence tests, maximised efficiency was reached with using ensemble initial conditions, cost function that covers entire model domain, short forecast length and medium-sized ensembles.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.