Chlamydomonas reinhardtii can use their flagella for two distinct types of movement: swimming through liquid or gliding on a solid substrate. Cells switching from swimming to gliding motility undergo a reversible flagellar quiescence. This phenomenon appears to involve the outer dynein arms, since mutants having altered outer arm beta and gamma dyneins (sup-pf-1 and sup-pf-2) show a diminished ability to quiesce. Sup-pf-1 and sup-pf-2 were originally isolated as gain-of-function mutations that suppress the flagellar paralysis resulting from radial spoke or central pair defects. Defective quiescence is also a gain-of-function phenomenon, as cells completely lacking outer arm heavy chains show a normal quiescence phenotype. These data suggest that regulation of outer arm dynein activity is essential for flagellar quiescence and furthermore that regulation of quiescence involves a signal transduction pathway that shares elements with the radial spoke/central pair system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.