Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than in other neotropical biomes, such as savanna. Such high floristic turnover indicates that numerous conservation areas across many countries will be needed to protect the full diversity of tropical dry forests. Our results provide a scientific framework within which national decision-makers can contextualize the floristic significance of their dry forest at a regional and continental scale. N eotropical seasonally dry forest (dry forest) is a biome with a wide and fragmented distribution, found from Mexico to Argentina and throughout the Caribbean (1, 2) ( Fig. 1). It is one of the most threatened tropical forests in the world (3), with less than 10% of its original extent remaining in many countries (4).Following other authors (5, 6), we define dry forest as having a closed canopy, distinguishing it from more open, grass-rich savanna. It occurs on fertile soils where the rainfall is less thañ 1800 mm per year, with a period of 3 to 6 months receiving less than 100 mm per month (5-7), during which the vegetation is mostly deciduous. Seasonally dry areas, especially in Peru and Mexico, were home to pre-Columbian civilizations, so human interaction with dry forest has a long history (8). The climates and fertile soils of dry forest regions have led to higher human population densities and an increasing demand for energy and land, enhancing degradation (9). More recently, destruction of dry forest has been accelerated by intensive cultivation of crops, such as sugar cane, rice and soy, or by conversion to pasture for cattle.Dry forest is in a critical state because so little of it is intact, and of the remnant areas, little is protected (3). For example, only 1.2% of the total Caatinga region of dry forest in Brazil is fully protected compared with 9.9% of the Brazilian Amazon (10). Conservation actions are urgently needed to protect dry forest's unique biodiversity-many plant species and even genera are restricted to it and reflect an evolutionary history confined to this biome (1).We evaluate the floristic relationships of the disjunct areas of neotropical dry forest and highlight those that contain the highest diversity and endemism of woody plant species. We also explore woody plant species turnover across geographic space among dry forests. Our results provide a framework to allow the conservation significance of each separate major region of dry forest to be assessed at a continental scale. Our analyses are based on a subset of a data set of 1602 inventories made in dry forest and related semi-deciduous forests from Mexico and the Caribbean to Argentina and Paraguay that covers 6958 woody species, which has been compiled by the Latin American and Caribbean Seasonally Dry Tropica...
Our understanding of the human and biophysical dimensions of tropical dry forest change and its cumulative effects is still in the early stages of academic discovery. The papers in this special section on Neotropical dry forests cover a wide range of sites and problems ranging from the use of multispectral and hyperspectral remote sensing platforms to the impact of hurricanes on tropical dry forest regeneration. Here, we present to the scientific community the results of a workshop on which research priorities for tropical dry forests were discussed. This discussion focuses on the need to develop linkages between remote sensing, ecological, and social science research. The incorporation of social sciences into ecological research could contribute dramatically to our understandings of tropical dry forests by providing important contextual information to ecologists, and by helping to develop an important science–policy–public nexus on which environmental management can succeed.
No abstract
Tropical dry forests are located predominantly in the northern portion of Venezuela, above 6°N. Although their potential extent covers ca 400,000 km2 (44% of the land), they currently occupy about 10 percent of this area. The diversity and complexity of Venezuelan dry forests increases from north to south along a gradient of decreasing severity of the dry season. A typical dry forest in Venezuela presents ca 110–170 species of plants from ca 40 to 50 families within an area of approximately 10 ha. Species composition and forest structure, however, are dependent on local landscape conditions (e.g., soil type, topography), and nearby forest types can be very different. Our analysis of five dry forest variants showed a maximum family similarity of 67 percent, although most values fell in the 50–60 percent interval. They are currently considered as one of Venezuela's most threatened ecosystems, but only 5 percent of extant dry forests are included in protected areas; this represents 0.5 percent of their potential extent. It is fundamental to promote the creation of at least 3 or 4 more large protected areas (ca 5000 ha), with different climatic and orographic characteristics, in combination with the recovery of threatened species, the restoration of degraded systems, and the implementation of sustainable development projects. Their apparent high resilience suggests that with the proper management we can restore and maintain the integrity of Venezuelan dry forests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.