The abundant plasma protein alpha(1)-proteinase inhibitor (alpha(1)-PI) physiologically inhibits neutrophil elastase (NE) and factor XIa and belongs to the serine protease inhibitor (serpin) protein superfamily. Inhibitory serpins possess a surface peptide domain called the reactive center loop (RCL), which contains the P1-P1' scissile peptide bond. Conversion of this bond in alpha(1)-PI from Met-Ser to Arg-Ser in alpha(1)-PI Pittsburgh (M358R) redirects alpha(1)-PI from inhibiting NE to inhibiting thrombin (IIa), activated protein C (APC), and other proteases. In contrast to either the wild-type or M358R alpha(1)-PI, heparin cofactor II (HCII) is a IIa-specific inhibitor with an atypical Leu-Ser reactive center. We examined the effects of replacement of all or part of the RCL of alpha(1)-PI with the corresponding parts of the HCII RCL on the activity and specificity of the resulting chimeric inhibitors. A series of 12 N-terminally His-tagged alpha(1)-PI proteins differing only in their RCL residues were expressed as soluble proteins in Escherichia coli. Substitution of the P16-P3' loop of alpha(1)-PI with that of HCII increased the low intrinsic antithrombin activity of alpha(1)-PI to near that of heparin-free HCII, while analogous substitution of the P2'-P3' dipeptide surpassed this level. However, gel-based complexing and quantitative kinetic assays showed that all mutant proteins inhibited thrombin at less than 2% of the rate of alpha(1)-PI (M358R) unless the P1 residue was also mutated to Arg. An alpha(1)-PI (P16-P3' HCII/M358R) variant was only 3-fold less active than M358R against IIa but 70-fold less active against APC. The reduction in anti-APC activity is desired in an antithrombotic agent, but the improvement in inhibitory profile came at the cost of a 3.5-fold increase in the stoichiometry of inhibition. Our results suggest that, while P1 Arg is essential for maximal antithrombin activity in engineered alpha(1)-PI proteins, substitution of the corresponding HCII residues can enhance thrombin specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.