Oviparous amniotes produce a large yolky egg that gives rise to a free-living hatchling. Structural characteristics and functional attributes of the egg are best known for birds, which have a large mass of fluid yolk surrounded by an extraembryonic yolk sac. Yolk nutrients are delivered to the embryo via the vascular yolk sac. This developmental pattern and nutrient transport mechanism is thought to be representative of all other lineages of amniotes. Recent discovery of a snake with cellularized yolk organized around a meshwork of blood vessels reveals an additional pattern for yolk mobilization, which may also occur in other squamate reptiles (lizards and snakes). This complex yolk sac raises interesting questions about developmental mechanisms and suggests a possible model for the transition between the egg of anamniotes and that of amniotes.
Evolution of the large‐yolked, amniotic egg required mechanisms by which extracellular yolk could be made available for embryonic development. In birds, the endodermal lining of the yolk sac absorbs and digests the yolk. In contrast, recent studies on lizards and snakes (squamates) have revealed that yolk is processed by means of a proliferating mass of “spaghetti‐like” strands formed by endodermal cells attached to anastomosing blood vessels. To clarify the method of yolk processing in chelonians, we applied electron microscopy to an extensive series of embryos of the pond slider turtle, Trachemys scripta. Our findings demonstrate that proliferating endodermal cells phagocytose yolk spheres. These cells remain attached to one another following mitosis, thereby forming clumps that progressively occupy the yolk sac cavity. Upon invasion of blood vessels, the cells become organized into elongated, vascularized “spaghetti‐like” strands of cells like those found in squamates. Residual yolk found in the body cavity of new hatchlings chiefly consists of these vascularized strands. Such strands of cells also develop in the false map turtle, Graptemys pseudographica (Emydidae). We infer that the developmental pattern by which yolk is processed is ancestral for both Chelonia and Reptilia, and therefore must have been modified or abandoned in birds or their archosaur ancestors.
Recent studies have demonstrated a mechanism of embryonic yolk processing in lizards, snakes and turtles that differs markedly from that of birds. In the avian pattern, cells that line the inside of the yolk sac take up products of yolk digestion and deliver nutrients into the vitelline circulation. In contrast, in squamates and turtles, proliferating endodermal cells invade and fill the yolk sac cavity, forming elongated strands of yolk-filled cells that surround small blood vessels. This arrangement provides a means by which yolk material becomes cellularized, digested, and transported for embryonic use. Ultrastructural observations on late-stage Alligator mississippiensis eggs reveal elongated, vascular strands of endodermal cells within the yolk sac cavity.The strands of cells are intermixed with free yolk spheres and clumps of yolk-filled endodermal cells, features that reflect early phases in the yolk-processing pattern.These observations indicate that yolk processing in Alligator is more like the pattern of other reptiles than that of birds.
Extensive analysis of cDNAs from the para locus in D. melanogaster reveals posttranscriptional modifications indicative of adenosine-to-inosine RNA editing. Most of these edits occur in highly conserved regions of the Na+ channel, and they occur in distant relatives of D. melanogaster as well. Sequence comparison between species has identified putative cis-acting elements important for each RNA editing site. Double-stranded RNA secondary structures with striking similarity to known RNA editing sites were generated based on these data. In addition, the RNA editing sites appear to be developmentally regulated. We have cloned a potential RNA editase, DRED, with a high degree of homology to the mammalian RED1,2 genes. The DRED locus itself is highly regulated by transcription from alternative promoters and alternative splicings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.