The rise in cortisol in fetal sheep during late pregnancy has been related to increased responsiveness of the adrenal to ACTH. Most reports have suggested that plasma ACTH concentrations rise coincident with or after the prepartum increase in cortisol. To reexamine the relationship of cortisol with basal immunoreactive ACTH (IR-ACTH) throughout the last 40 days of pregnancy and to determine changes in fetal pituitary responsiveness during this time, we measured basal and synthetic ovine corticotrophin-releasing factor (oCRF) (10 ng-10 micrograms) induced rises in ACTH and cortisol in fetal sheep at days 110-115, 125-130, and 135-140 of pregnancy. The fetuses were catheterized on day 105-120 and entered spontaneous labour at greater than 140 days. Basal IR-ACTH (picograms per millilitre +/- SEM) rose from 16.7 +/- 2.9 pg/mL at day 110-115 to 34.8 +/- 8.7 pg/mL at day 141-145. There was a significant effect of time on basal ACTH concentrations with a mean increase of approximately 5 pg ACTH per millilitre of plasma per 5-day sampling interval. Plasma cortisol changed gradually between day 110 and 125 of gestation and then more rapidly to term. At day 110-115 of gestation there was no significant change in plasma ACTH after 10 or 100 ng oCRF, but there was a significant increase in ACTH after 1 microgram of oCRF. Plasma cortisol did not change after any CRF injection. The change in IR-ACTH after oCRF at day 125-130 of gestation was significantly greater than that at day 110-115. Plasma cortisol concentrations were elevated following 1- and 10-micrograms injections of oCRF.(ABSTRACT TRUNCATED AT 250 WORDS)
In sheep, parturition is associated with maturation of fetal pituitary-adrenal function, and with rises in the concentrations of ACTH and cortisol (F) in fetal plasma. We examined the hypothesis that pituitary ACTH output in response to arginine vasopressin (AVP) and CRF separately and together might change during late pregnancy as a function of fetal age. Fetal sheep were chronically catheterized, and bolus iv injections of equimolar AVP, CRF, AVP plus CRF, or saline (controls) were given on days 110-115, 125-130, and 135-140 of gestation. AVP evoked significant rises in plasma ACTH on days 110-115 and 125-130, but not on days 135-140. After AVP, the peak plasma concentrations of ACTH were attained at 5-10 min, and basal (preinjection) values were reestablished by 30-60 min. After CRF treatment, plasma ACTH rose progressively throughout the 240 min of the study. Evidence was obtained in support of an increase in pituitary responsiveness to CRF between days 110-115 and 125-130 and a decrease in response on days 135-140, when basal F concentrations were higher. The ACTH response to AVP, relative to that to CRF, was greatest in the youngest fetuses. On days 110-115 only, CRF and AVP showed a synergistic response in ACTH output, especially during the first 30 min after agonist injection. Plasma F rose in response to the changes in endogenously released ACTH in a manner consistent with progressive fetal adrenal maturation between days 110-140 of pregnancy. We conclude that in vivo the ovine fetal pituitary responds separately and synergistically to AVP and CRF on days 110-115 of gestation, but the relative role of AVP in stimulating ACTH release decreases with progressive gestational age.
Oxytocin was measured in incubates and perifusates of neurosecretosomes prepared from sow neural lobes (n = 50) and in incubates of isolated neural lobes (n = 5). In none of these preparations was oxytocin output affected by exposure to purified porcine relaxin (at concentrations up to 10(-7) mol l-1). Moreover, in lactating sows (n = 9), 6-10 days post partum, the administration of porcine relaxin (1.5 or 3.0 mg) intravenously, immediately before a suckling episode, did not affect the plasma oxytocin profile compared with saline treatments (within sow) nor did it alter suckling behaviour or the weight gain of the litter. In all sows, a spike (25-75 pg ml-1) of oxytocin was measured during milk ejection coincident with suckling. These results suggest that porcine relaxin does not affect oxytocin release in suckling sows in contrast to reported findings in rats. The data also support the view that porcine relaxin could be used at farrowing without adverse effects on suckling.
We examined the hypothesis that in fetal sheep during late pregnancy exogenous glucocorticoids might affect differentially the pituitary response, measured as changes in plasma ACTH concentrations, to the systemic administration of ovine corticotrophin-releasing factor (oCRF), arginine vasopressin (AVP), or oCRF + AVP. At d 113-116 of pregnancy, equimolar injections of oCRF and AVP given separately provoked similar significant increases in plasma ACTH; the change in ACTH over basal values was significantly greater than the sum of the two separate responses when AVP + oCRF were given together. Exogenous dexamethasone did not affect basal ACTH concentrations, but suppressed significantly the responses to oCRF, AVP, and oCRF + AVP. At d 126-130, there was a significant ACTH response to CRF alone and to AVP + oCRF, but not to AVP alone. The response during the first 30 min postinjection to oCRF was significantly less than that to AVP + oCRF. Plasma cortisol rose after each peptide injection. Exogenous dexamethasone suppressed both basal and stimulated responses to each peptide. At the amounts injected, there was no significant ACTH or cortisol response to oCRF, AVP, or oCRF + AVP at d 136-140, but dexamethasone suppressed basal ACTH and cortisol concentrations at this time. We conclude that stimulated, but not basal, release of ACTH is subject to the negative feedback effect of exogenous glucocorticoid by d 113-116 of gestation in fetal sheep. Both basal and stimulated release of ACTH and cortisol are suppressed after d 125. At the amount of exogenous dexamethasone given, oCRF, AVP, and oCRF + AVP-stimulated responses are affected similarly.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.