Patients with cystic fibrosis (CF)-related diabetes (CFRD) have clinical features of both type 1 and type 2 diabetes. Past studies have documented peripheral insulin resistance in CF, and some studies have noted high hepatic glucose production (HGP) in CF patients. We hypothesized that patients with CF, similar to patients with type 2 diabetes, have hepatic insulin resistance. Cystic fibrosis is a catabolic condition, yet the etiology of catabolism is poorly understood. De novo lipogenesis is energy wasteful and precludes ketogenesis. Patients with CFRD rarely develop ketogenesis, despite insulin deficiency. We speculated that CF patients have de novo lipogenesis, and therefore evaluated substrate utilization in CF. Using [6,6-2H2]glucose and a three-step hyperinsulinemic-euglycemic clamp, we measured HGP in 29 adult CF subjects and 18 control volunteers. Using indirect calorimetry, we measured lipid oxidation, oxidative glucose metabolism, and resting energy expenditure at baseline and at high levels of insulin. All subjects were characterized by oral glucose tolerance testing (OGTT) and National Diabetes Data Group criteria. The CF subjects had increased HGP when compared with control subjects (CF, 3.5+/-0.6; control, 2.5+/-0.5 mg x kg(-1) x h(-1); P = 0.002). Baseline HGP correlated with glucose levels obtained 2 h after a glucose load given for OGTT (r = 0.69, P = 0.001). Suppression of HGP by insulin was significantly less in all CF subgroups than in control subjects at peripheral insulin levels of 16 and 29 microU/ml. At peripheral insulin levels of 100 microU/ml and 198 microU/ml, there was no difference in insulin suppression of HGP between CF and control subjects. At baseline, there was no significant difference between control and CF subjects for glucose or lipid oxidation. During maximum insulin stimulation, there was a greater tendency for nonoxidative glucose metabolism in all CF subjects. The CF subjects with abnormal glucose tolerance also had de novo lipogenesis. Our results indicate that CF patients have several defects in substrate utilization, including de novo lipogenesis. Furthermore, these results suggest that high hepatic glucose production and hepatic insulin resistance contribute to the high incidence of abnormal glucose tolerance in CF.
Our findings indicate that proteolysis is higher in adult CF patients than in controls and that CF patients exhibit resistance to the anabolic effects of insulin on proteolysis. Most significantly, our findings indicate that basal rates of proteolysis inversely correlate with clinical status in CF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.