Background The COVID-19 pandemic is impacting mental health, but it is not clear how people with different types of mental health problems were differentially impacted as the initial wave of cases hit. Objective The aim of this study is to leverage natural language processing (NLP) with the goal of characterizing changes in 15 of the world’s largest mental health support groups (eg, r/schizophrenia, r/SuicideWatch, r/Depression) found on the website Reddit, along with 11 non–mental health groups (eg, r/PersonalFinance, r/conspiracy) during the initial stage of the pandemic. Methods We created and released the Reddit Mental Health Dataset including posts from 826,961 unique users from 2018 to 2020. Using regression, we analyzed trends from 90 text-derived features such as sentiment analysis, personal pronouns, and semantic categories. Using supervised machine learning, we classified posts into their respective support groups and interpreted important features to understand how different problems manifest in language. We applied unsupervised methods such as topic modeling and unsupervised clustering to uncover concerns throughout Reddit before and during the pandemic. Results We found that the r/HealthAnxiety forum showed spikes in posts about COVID-19 early on in January, approximately 2 months before other support groups started posting about the pandemic. There were many features that significantly increased during COVID-19 for specific groups including the categories “economic stress,” “isolation,” and “home,” while others such as “motion” significantly decreased. We found that support groups related to attention-deficit/hyperactivity disorder, eating disorders, and anxiety showed the most negative semantic change during the pandemic out of all mental health groups. Health anxiety emerged as a general theme across Reddit through independent supervised and unsupervised machine learning analyses. For instance, we provide evidence that the concerns of a diverse set of individuals are converging in this unique moment of history; we discovered that the more users posted about COVID-19, the more linguistically similar (less distant) the mental health support groups became to r/HealthAnxiety (ρ=–0.96, P<.001). Using unsupervised clustering, we found the suicidality and loneliness clusters more than doubled in the number of posts during the pandemic. Specifically, the support groups for borderline personality disorder and posttraumatic stress disorder became significantly associated with the suicidality cluster. Furthermore, clusters surrounding self-harm and entertainment emerged. Conclusions By using a broad set of NLP techniques and analyzing a baseline of prepandemic posts, we uncovered patterns of how specific mental health problems manifest in language, identified at-risk users, and revealed the distribution of concerns across Reddit, which could help provide better resources to its millions of users. We then demonstrated that textual analysis is sensitive to uncover mental health complaints as they appear in real time, identifying vulnerable groups and alarming themes during COVID-19, and thus may have utility during the ongoing pandemic and other world-changing events such as elections and protests.
Recent advances in single-cell technologies and integration algorithms make it possible to construct comprehensive reference atlases encompassing many donors, studies, disease states, and sequencing platforms. Much like mapping sequencing reads to a reference genome, it is essential to be able to map query cells onto complex, multimillion-cell reference atlases to rapidly identify relevant cell states and phenotypes. We present Symphony (https://github.com/immunogenomics/symphony), an algorithm for building large-scale, integrated reference atlases in a convenient, portable format that enables efficient query mapping within seconds. Symphony localizes query cells within a stable low-dimensional reference embedding, facilitating reproducible downstream transfer of reference-defined annotations to the query. We demonstrate the power of Symphony in multiple real-world datasets, including (1) mapping a multi-donor, multi-species query to predict pancreatic cell types, (2) localizing query cells along a developmental trajectory of fetal liver hematopoiesis, and (3) inferring surface protein expression with a multimodal CITE-seq atlas of memory T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.