For arsenic speciation, the inputs for wet deposition are not well understood. Here we demonstrate that trimethylarsine oxide (TMAO) and inorganic arsenic are the dominant species in monsoonal wet deposition in the summer Indian subcontinent, Bangladesh, with inorganic arsenic dominating, accounting for ∼80% of total arsenic in this medium. Lower concentrations of both species were found in monsoonal wet deposition in the winter Indian subcontinent, Sri Lanka. The only other species present was dimethylarsinic acid (DMAA), but this was usually below limits of detection (LoD). We hypothesize that TMAO and inorganic arsenic in monsoonal wet deposition are predominantly of marine origin. For TMAO, the potential source is the atmospheric oxidation of marine derived trimethylarsine. For inorganic arsenic, our evidence suggests entrainment of water column inorganic arsenic into atmospheric particulates. These conclusions are based on weather trajectory analysis and on the strong correlations with known wet deposition marine derived elements: boron, iodine, and selenium. The finding that TMAO and inorganic arsenic are widely present and elevated in monsoonal wet deposition identifies major knowledge gaps that need to be addressed regarding the understanding of arsenic's global cycle.
Marine sources of arsenic to the atmosphere are normally dismissed as minor. Here we show that arsenic can be biovolatilized from seawater, and that biovolatilzation is based on organic arsenic species present in the seawater. Even though inorganic arsenic is in great excess in seawaters, it is trimethylarsine (TMA) that is the primary biovolatilized product, with dimethylarsine (DMA) also observed if dimethylarsinic acid (DMAA) is spiked into seawaters. With respect to budgets, 0.04% of the total arsenic in the seawater was biovolatilized over a 2-week incubation period. To test the environmental significance of this finding, wet deposition was analyzed for arsenic species at coastal locations, one of which was the origin of the seawater. It was found that the oxidized product of TMA, trimethylarsine oxide (TMAO), and to a less extent DMAA were widely present. When outputs for arsines (0.9 nmol/m/d) from seawater and inputs from wet deposition (0.3-0.5 nmol/m/d) were compared, they were of the same order of magnitude. These findings provide impetus to reexamining the global arsenic cycle, as there is now a need to determine the flux of arsines from the ocean to the atmosphere.
Arsenic in rice grain is dominated by two species: the carcinogen inorganic arsenic (the sum of arsenate and arsenite) and dimethylarsinic acid (DMA). Rice is the dominant source of inorganic arsenic into the human diet. As such, there is a need to identify sources of low-inorganic arsenic rice globally. Here we surveyed polished (white) rice across representative regions of rice production globally for arsenic speciation. In total 1180 samples were analysed from 29 distinct sampling zones, across 6 continents. For inorganic arsenic the global x was 66 μg/kg, and for DMA this figure was 21 μg/kg. DMA was more variable, ranging from < 2 to 690 μg/kg, while inorganic arsenic ranged from < 2 to 399 μg/kg. It was found that inorganic arsenic dominated when grain sum of species was < 100 μg/kg, with DMA dominating at higher concentrations. There was considerable regional variance in grain arsenic speciation, particularly in DMA where temperate production regions had higher concentrations. Inorganic arsenic concentrations were relatively consistent across temperate, subtropical and northern hemisphere tropical regions. It was only in southern hemisphere tropical regions, in the eastern hemisphere that low-grain inorganic arsenic is found, namely East Africa (x < 10 μg/kg) and the Southern Indonesian islands (x < 20 μg/kg). Southern hemisphere South American rice was universally high in inorganic arsenic, the reason for which needs further exploration.
The speciation of arsenic in wet and dry deposition are ambiguously described in current literature. Presented here is a 2 year study quantifying arsenic species in atmospheric deposition collected daily from an E. Atlantic coastal, semirural site, with comparative urban locations. Inorganic arsenic (Asi) was the principal form of arsenic in wet deposition, with a mean concentration of 0.54 μmol/m3. Trimethylarsine oxide (TMAO) was found to be the dominant form of organic arsenic, determined as above the LoD in 33% of wet deposition samples with a mean concentration of 0.12 μmol/m3. Comparison with codeposited trace elements and prevailing weather trajectories indicated that both anthropogenic and marine sources contribute to atmospheric deposition. Analysis of dry deposition revealed it to be a less significant input to the land-surface for Asi, contributing 32% of that deposited by wet deposition. Dry deposition had a larger proportion of Asi than that found in wet deposition, with TMAO making up only 12% of the sum of species. In comparison, urban sites showed large spatial and temporal variations in organic arsenic deposition, indicating that local sources of methylated species may be likely and that further understanding of biogenic arsine evolution and degradation are required to adequately assess the atmospheric arsenic burden and subsequent contribution to terrestrial ecosystems.
Using village-based rice processing plants in rural Bangladesh, this study considered how parboiling rice could be altered to reduce the content of the carcinogen inorganic arsenic. Parboiling is normally conducted with rough rice (i.e., where the husk is intact) that is soaked overnight at ambient temperatures, and then either steamed or boiled for ∼10 min, followed by drying. Across 13 geographically dispersed facilities it was found that a simple alteration parboiling wholegrain, instead of rough rice, decreased the inorganic arsenic content by 25% (P = 0.002) in the final polished grain. Also, parboiling wholegrain had little impact on milling quality of the final polished rice. The wholegrain parboiling approach caused statistically significant median enrichment of calcium, by 213%; and a reduction in potassium, by 40%; with all other nutrient elements tested being unaffected. Milled parboiled rough rice had an enriched inorganic arsenic compared to nonparboiled milled rice, but parboiling of wholegrain rice did not enrich inorganic arsenic in the final milled product. Polished rice produced from the parboiling of both rough and wholegrain rice significantly reduced cadmium compared to nonparboiled polished rice, by 25%. This study also identified that trimethylarsine oxide and tretramethylarsonium are widely elevated in the husk and bran of rice and, therefore, gives new insights into the biogeochemical cycling of arsenic in paddy ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.