Peripheral blood neutrophils form highly decondensed chromatin structures, termed neutrophil extracellular traps (NETs), that have been implicated in innate immune response to bacterial infection. Neutrophils express high levels of peptidylarginine deiminase 4 (PAD4), which catalyzes histone citrullination. However, whether PAD4 or histone citrullination plays a role in chromatin structure in neutrophils is unclear. In this study, we show that the hypercitrullination of histones by PAD4 mediates chromatin decondensation. Histone hypercitrullination is detected on highly decondensed chromatin in HL-60 granulocytes and blood neutrophils. The inhibition of PAD4 decreases histone hypercitrullination and the formation of NET-like structures, whereas PAD4 treatment of HL-60 cells facilitates these processes. The loss of heterochromatin and multilobular nuclear structures is detected in HL-60 granulocytes after PAD4 activation. Importantly, citrullination of biochemically defined avian nucleosome arrays inhibits their compaction by the linker histone H5 to form higher order chromatin structures. Together, these results suggest that histone hypercitrullination has important functions in chromatin decondensation in granulocytes/neutrophils.
Faster light adaptation improves productivity
Crop plants protect themselves from excess sunlight by dissipating some light energy as heat, readjusting their systems when shadier conditions prevail. But the photosynthetic systems do not adapt to fluctuating light conditions as rapidly as a cloud passes overhead, resulting in suboptimal photosynthetic efficiency. Kromdijk
et al.
sped up the adaptation process by accelerating interconversion of violaxanthin and zeaxanthin in the xanthophyll cycle and by increasing amounts of a photosystem II subunit. Tobacco plants tested with this system showed about 15% greater plant biomass production in natural field conditions.
Science
, this issue p.
857
Methylation of arginine (Arg) and lysine residues in histones has been correlated with epigenetic forms of gene regulation. Although histone methyltransferases are known, enzymes that demethylate histones have not been identified. Here, we demonstrate that human peptidylarginine deiminase 4 (PAD4) regulates histone Arg methylation by converting methyl-Arg to citrulline and releasing methylamine. PAD4 targets multiple sites in histones H3 and H4, including those sites methylated by coactivators CARM1 (H3 Arg17) and PRMT1 (H4 Arg3). A decrease of histone Arg methylation, with a concomitant increase of citrullination, requires PAD4 activity in human HL-60 granulocytes. Moreover, PAD4 activity is linked with the transcriptional regulation of estrogen-responsive genes in MCF-7 cells. These data suggest that PAD4 mediates gene expression by regulating Arg methylation and citrullination in histones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.