Gonadal steroid hormones influence vascular tone and the development of hypertension. There are sex differences in the incidence of cardiovascular diseases, and great attention has been placed on the study of estrogen cardiovascular effects. However, there are only a few reports on the effects of testosterone on the vasculature. It is commonly accepted that the mechanism of the action of steroid hormones on target tissues is mediated through the binding of hormones to cytoplasmic or nuclear receptors. However, some studies indicate that steroid action can be extremely rapid and therefore unlikely to be through a genomic mechanism. The purpose of this study was to assess the effect of intravascularly confined testosterone on an isolated rat heart to demonstrate acute and possibly nongenomic effects of the steroid. Our results show that testosterone blocked the adenosine vasodilator effect and increased vascular resistance, even when its presence was restricted to the coronary vascular lumen. These effects were exerted rapidly and possibly through nongenomic mechanisms.
These findings support the addition of omega-3 fatty acid supplementation to programs aiming to improve the metabolic status of OW children with MS, although additional research on the longer-term safety and efficacy of this treatment in this population is required.
Aim. The present study was designed to investigate the activity of two glibenclamide derivatives on glucose concentration. An additional aim was to identify the biodistribution of glibenclamide derivatives in different organs in a diabetic animal model. Methods. The effects of two glibenclamide derivatives on glucose concentration were evaluated in a diabetic animal model. In addition, glibenclamide derivatives were bound to Tc-99m using radioimmunoassay methods. To evaluate the pharmacokinetics of the glibenclamide derivatives over time (15, 30, 45 and 60 min) the Tc-99m-glibenclamide conjugates were used. Results. The results showed that glibenclamide-pregnenolone had greater hypoglycemic activity than glibenclamide or glibenclamide-OH. The data also showed that the biodistribution of Tc-99m-glibenclamide-OH in all organs was less than that of the Tc-99m-glibenclamide-pregnenolone derivative. Conclusions. The glibenclamide-pregnenolone derivative had greater hypoglycemic effects and its biodistribution was wider than glibenclamide-OH. The data suggest that the steroid nucleus may be important to the hypoglycemic activity of the glibenclamide-pregnenolone derivative and this could be related to the degree of lipophilicity induced by the steroid nucleus in the chemical structure of glibenclamide-pregnenolone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.