Insects play crucial roles in ecosystems, and how they disperse within their habitat has significant implications for our daily life. Examples include foraging ranges for pollinators, as well as the spread of disease vectors and pests. Despite technological advances with radio tags, isotopes, and genetic sequencing, insect dispersal and migration range remain challenging to study. The gold standard method of markrecapture is tedious and inefficient. This paper demonstrates the construction of a compact, inexpensive hyperspectral fluorescence lidar. The system is based on off-the-shelf components and 3D printing. After evaluating the performance of the instrument in the laboratory, we demonstrate its efficient range-resolved fluorescence spectra in situ. We present daytime remote ranging and fluorescent identification of auto-powder-tagged honey bees. We also showcase range-, temporally-and spectrally-resolved free-flying mosquitoes, which were tagged through feeding on fluorescent-dyed sugar water. We conclude that violet light can efficiently excite administered sugar meals imbibed by flying insects. Our field experiences provide realistic expectations of signal-to-noise levels, which can be used in future studies. The technique is generally applicable and can efficiently monitor several tagged insect groups in parallel for comparative ecological analysis. This technique opens up a range of ecological experiments, which were previously unfeasible.
Monitoring insects of different species to understand the factors affecting their diversity and decline is a major challenge. Laser remote sensing and spectroscopy offer promising novel solutions to this. Coherent scattering from thin wing membranes also known as wing interference patterns (WIPs) have recently been demonstrated to be species specific. The colors of WIPs arise due to unique fringy spectra, which can be retrieved over long distances. To demonstrate this, a new concept of infrared (950-1650 nm) hyperspectral lidar with 64 spectral bands based on a supercontinuum light source using ray-tracing and 3D printing is developed. A lidar with an unprecedented number of spectral channels, high signal-to-noise ratio, and spatio-temporal resolution enabling detection of free-flying insects and their wingbeats. As proof of principle, coherent scatter from a damselfly wing at 87 m distance without averaging (4 ms recording) is retrieved. The fringed signal properties are used to determine an effective wing membrane thickness of 1412 nm with ±4 nm precision matching laboratory recordings of the same wing. Similar signals from free flying insects (2 ms recording) are later recorded. The accuracy and the method's potential are discussed to discriminate species by capturing coherent features from free-flying insects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.