Carbon monoxide (CO) in expired gas has been shown to be elevated with asthma; however, its function is not known, and there is some potential that it may serve a bronchoprotective role to decrease airway hyperresponsiveness (AHR). Thus the ability of CO to reverse methacholine (MCh)-induced bronchoconstriction was evaluated in C57BL/6 (C57) and A/J mice with and without airway inflammation produced by ovalbumin (OVA). Acutely administered CO (1% in air, 10 min) reduced MCh-driven increases in lung resistance in OVA-challenged C57 mice by an average of 50% (from 14.5 to 7.1 cmH2O.ml-1.s-1), whereas no effect was observed in naïve C57 mice or OVA-challenged C57 mice inhaling air alone. Acutely inhaled CO (500 ppm = 0.05%, for 10 min) reduced MCh-induced airway reactivity (AR) by 20-60% in airway hyperresponsive naïve A/J mice, whereas repeated 10-min administrations of 500 ppm CO over a 5-day period decreased AR by 50%. Repeated administration of low-dose CO [250 (0.025%) and (0.05%) 500 ppm, 1 h/day, 5 days] to A/J mice with airway inflammation likewise resulted in a drop of AR by 50%, compared with those not receiving CO. Inhibition of guanylyl cyclase/guanosine 3',5'-cyclic monophosphothioate (cGMP) using 1H-[1,2,4] oxydiazolo[4,3-a]quinoxalin-1-one or a competitive inhibitor, Rp diastereomers of 8-bromo-cGMP, resulted in inhibition of the effect of CO on AHR, suggesting that the effects of CO were mediated through this mechanism. These results indicate that low-dose CO can effectively reverse AHR in the presence and absence of airway inflammation in mice and suggest a potential role for CO in the modulation of AHR.
Following trauma there is an early hyper-reactive inflammatory response that can lead to multiple organ dysfunction and high mortality in trauma patients; this response is often accompanied by a delayed immunosuppression that adds the clinical complications of infection and can also increase mortality. [1][2][3][4][5][6][7][8][9] Many studies have begun to assess these changes in the reactivity of the immune system following trauma. [10][11][12][13][14][15] Immunologic studies are greatly supported through the wide variety of transgenic and knockout mice available for in vivo modeling; these strains aid in detailed investigations to assess the molecular pathways involved in the immunologic responses. [16][17][18][19][20][21] The challenge in experimental murine trauma modeling is long term investigation, as fracture fixation techniques in mice, can be complex and not easily reproducible. [22][23][24][25][26][27][28][29][30] This pseudofracture model, an easily reproduced trauma model, overcomes these difficulties by immunologically mimicking an extremity fracture environment, while allowing freedom of movement in the animals and long term survival without the continual, prolonged use of anaesthesia. The intent is to recreate the features of long bone fracture; injured muscle and soft tissue are exposed to damaged bone and bone marrow without breaking the native bone.The pseudofracture model consists of two parts: a bilateral muscle crush injury to the hindlimbs, followed by injection of a bone solution into these injured muscles. The bone solution is prepared by harvesting the long bones from both hindlimbs of an age-and weight-matched syngeneic donor. These bones are then crushed and resuspended in phosphate buffered saline to create the bone solution.Bilateral femur fracture is a commonly used and well-established model of extremity trauma, and was the comparative model during the development of the pseudofracture model. Among the variety of available fracture models, we chose to use a closed method of fracture with soft tissue injury as our comparison to the pseudofracture, as we wanted a sterile yet proportionally severe peripheral tissue trauma model. 31 Hemorrhagic shock is a common finding in the setting of severe trauma, and the global hypoperfusion adds a very relevant element to a trauma model. [32][33][34][35][36] The pseudofracture model can be easily combined with a hemorrhagic shock model for a multiple trauma model of high severity. 37 Protocol
It is common knowledge that severe blood loss and traumatic injury can lead to a cascade of detrimental signaling events often resulting in mortality. 1,2,3,4,5 These signaling events can also lead to sepsis and/or multiple organ dysfunction (MOD). 6,7,8,9 It is critical then to investigate the causes of suppressed immune function and detrimental signaling cascades in order to develop more effective ways to help patients who suffer from traumatic injuries. 10 This fixed pressure Hemorrhagic Shock (HS) procedure, although technically challenging, is an excellent resource for investigation of these pathophysiologic conditions. 11,12,13 Advances in the assessment of biological systems, i.e. Systems Biology have enabled the scientific community to further understand complex physiologic networks and cellular communication patterns. 14 HemorrhagicShock has proven to be a vital tool for unveiling these cellular communication patterns as they relate to immune function. 15,16,17,18 This procedure can be mastered! This procedure can also be used as either a fixed volume or fixed pressure approach. We adapted this technique in the murine model to enhance research in innate and adaptive immune function. 19,20,21 Due to their small size HS in mice presents unique challenges. However due to the many available mouse strains, this species represents an unparalleled resource for the study of the biologic responses. The HS model is an important model for studying cellular communication patterns and the responses of systems such as hormonal and inflammatory mediator systems, and danger signals, i.e. DAMP and PAMP upregulation as it elicits distinct responses that differ from other forms of shock. 22,23,24,25 The development of transgenic murine strains and the induction of biologic agents to inhibit specific signaling have presented valuable opportunities to further elucidate our understanding of the up and down regulation of signal transduction after severe blood loss, i.e. HS and trauma 26,27,28,29,30 .There are numerous resuscitation methods (R) in association with HS and trauma. 31,32,33,34 A fixed volume resuscitation method of solely lactated ringer solution (LR), equal to three times the shed blood volume, is used in this model to study endogenous mechanisms such as remote organ injury and systemic inflammation. 35,36,38 This method of resuscitation is proven to be effective in evaluating the effects of HS and trauma 38,39 .
Background In multiply injured patients, bilateral femur fractures invoke a substantial systemic inflammatory impact and remote organ dysfunction. However, it is unclear whether isolated bone or soft tissue injury contributes to the systemic inflammatory response and organ injury after fracture. Questions/purposes We therefore asked whether the systemic inflammatory response and remote organ dysfunction are attributable to the bone fragment injection, adjacent soft tissue injury, or both. Methods Male C57/BL6 mice (8-10 weeks old, 20-30 g) were assigned to four groups: bone fragment injection (BF, n = 9) group; soft tissue injury (STI, n = 9) group; BF + STI (n = 9) group, in which both insults were applied; and control group, in which neither insult was applied. Animals were sacrificed at 6 hours. As surrogates for systemic inflammation, we measured serum IL-6, IL-10, osteopontin, and alanine aminotransferase (ALT) and nuclear factor (NF)-jB and myeloperoxidase (MPO) in the lung. Results The systemic inflammatory response (mean IL-6 level) was similar in the BF (61.8 pg/mL) and STI (67.9 pg/mL) groups. The combination (BF + STI) of both traumatic insults induced an increase in mean levels of inflammatory parameters
Uncontrolled hemorrhage is an important cause of preventable deaths among trauma patients. We have developed a murine model of uncontrolled hemorrhage via a liver laceration that results in consistent blood loss, hemodynamic alterations, and survival. Mice undergo a standardized resection of the left-middle lobe of the liver. They are allowed to bleed without mechanical intervention. Hemostatic agents can be administered as pre-treatment or rescue therapy depending on the interest of the investigator. During the time of hemorrhage, real-time hemodynamic monitoring via a left femoral arterial line is performed. Mice are then sacrificed, blood loss is quantified, blood is collected for further analysis, and organs are harvested for analysis of injury. Experimental design is described to allow for simultaneous testing of multiple animals. Liver hemorrhage as a model of uncontrolled hemorrhage exists in the literature, primarily in rat and porcine models. Some of these models utilize hemodynamic monitoring or quantify blood loss but lack consistency. The present model incorporates quantification of blood loss, real-time hemodynamic monitoring in a murine model that offers the advantage of using transgenic lines and a high-throughput mechanism to further investigate the pathophysiologic mechanisms in uncontrolled hemorrhage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.