IntroductionUltrasound (US) performed prior to percutaneous tracheostomy (PT) may be useful in avoiding injury to pretracheal vascular structures and in avoiding high placement of the tube. Bedside real-time US guidance with visualization of needle path is routinely utilized for other procedures such as central venous catheterization, and may enhance the safety and accuracy of PT without causing airway occlusion or hypercarbia. Our objective was to demonstrate that PT performed under real-time US guidance with visualization of needle path during tracheal puncture is feasible, including in patients with features that increase the technical difficulty of PT.MethodsMechanically ventilated patients with acute brain injury requiring tracheostomy underwent US guided PT. The orotracheal tube was withdrawn using direct laryngoscopy. The trachea was punctured under real-time US guidance (with visualization of the needle path) while using the acoustic shadows of the cricoid and the tracheal rings to identify the level of puncture. After guidewire passage the site and level of entry was verified using the bronchoscope, which was then withdrawn. Following dilatation and tube placement, placement in the airway was confirmed using auscultation and the "lung sliding" sign on US. Bronchoscopy and chest X-ray were then performed to identify any complications.ResultsThirteen patients successfully underwent US guided PT. Three patients were morbidly obese, two were in cervical spine precautions and one had a previous tracheostomy. In all 13 patients bronchoscopy confirmed that guidewire entry was through the anterior wall and between the first and fifth tracheal rings. There was no case of tube misplacement, pneumothorax, posterior wall injury, significant bleeding or other complication during the procedure.ConclusionsPercutaneous tracheostomy performed under real-time ultrasound guidance is feasible and appears accurate and safe, including in patients with morbid obesity and cervical spine precautions. Larger studies are required to further define the safety and relative benefits of this technique.Trial registrationUMIN Clinical Trials Registry, UMIN000005023.
Introduction The value of simulation in medical education and procedural skills training is well recognized. Despite this, many mannequin-based trainers are limited by the inability of the trainee to view the internal anatomical structures. This study evaluates the usability and feasibility of a 1st person point of view (POV) augmented reality (AR) trainer on needle insertion as a component of central venous catheter (CVC) placement. Methods Forty subjects, including medical students and anesthesiology residents and faculty participated. AR glasses were provided through which the relevant internal anatomical landmarks were projected. Following a practice period, participants were asked to place the needle in the mannequin without the benefit of the AR projected internal anatomy. The ability of the trainees to correctly place the needle was documented. Participants also completed a short survey describing their perceptions of the AR technology. Results Participants reported that the AR technology was realistic (77.5%) and that the ability to view the internal anatomy was helpful (92.5%). Furthermore, 85% and 82.1%, respectively, believed that the AR technology promoted learning and should be incorporated into medical training. The ability to successfully place the needle was similar between experienced and non-experienced participants, however, less experienced participants were more likely to inadvertently puncture the carotid artery. Conclusions Results of this pilot study demonstrated the usability and feasibility of AR technology as a potentially important adjunct to simulated medical skills training. Further development and evaluation of this innovative technology under a variety of simulated medical training settings would be an important next step.
IntroductionOptic nerve sheath diameter (ONSD) measurement with bedside ultrasound has been shown in many studies to accurately detect high intracranial pressure (ICP). The accuracy of point-in-time ONSD measurement in the presence of ongoing fluctuation of ICP between high and normal is not known. Recent laboratory investigation suggests that reversal of optic nerve sheath distension may be impaired following bouts of intracranial hypertension. Our objective was to compare the accuracy of ONSD measurement in the setting of fluctuating versus stable ICP.MethodsThis was a retrospective analysis of data from prospective study comparing ONSD to invasive ICP. Patients with invasive ICP monitors in the ICU underwent ONSD measurement with simultaneous blinded recording of ICP from the invasive monitor. Three measurements were made in each eye. Significant acute ICP fluctuation (SAIF) was defined in two different ways; as the presence of ICP both above and below 20 mmHg within a cluster of six measurements (Definition 1) and as a magnitude of fluctuation >10 mmHg within the cluster (Definition 2). The accuracy of point-in-time ONSD measurements for the detection of concurrent ICP >20 mmHg within clusters fulfilling a specific definition of SAIF was compared to the accuracy of ONSD measurements within clusters not fulfilling the particular definition by comparison of independent receiver operating characteristic (ROC) curves.ResultsA total of 613 concurrent ONSD-ICP measurements in 109 clusters were made in 73 patients. Twenty-three (21%) clusters fulfilled SAIF Definition 1 and 17 (16%) SAIF Definition 2. For Definition 1, the difference in the area under the curve (AUC) of ROC curves for groups with and without fluctuation was 0.10 (P = 0.0001). There was a fall in the specificity from 98% (95% CI 96 to 99%) to 74% (63 to 83%) and in the positive predictive value from 89% (80 to 95%) to 76% (66 to 84%) with fluctuation. For Definition 2, also, there was a significant difference between the AUC of ROC curves of groups with fluctuation-magnitude >10 mmHg and those with fluctuation-magnitude 5 to 10 mmHg (0.06, P = 0.04) as well as <5 mmHg (0.07, P = 0.01).ConclusionsSpecificity and PPV of ONSD for ICP >20 mmHg are substantially decreased in patients demonstrating acute fluctuation of ICP between high and normal. This may be because of delayed reversal of nerve sheath distension.
Event-specific, simulation-based training resulted in superior performance in scenarios compared with traditional training and simulation-based training in an alternate event.
BackgroundAt many academic institutions, anesthesiology residents are responsible for managing emergent intubations outside of the operating room (OOOR), with complications estimated to be as high as 39%. In order to create an OOOR training curriculum, we evaluated residents’ familiarity with the content and correct adherence to the American Society of Anesthesiologists’ Difficult Airway Algorithm (ASA DAA).MethodsResidents completed a pre-simulation multiple-choice survey measuring their understanding and use of the DAA. Residents then managed an emergent, difficult OOOR intubation in the simulation center, where two trained reviewers assessed performance using checklists. Post-simulation, the residents completed a survey rating their behaviors during the simulation. The primary outcome was comprehension and adherence to the DAA as assessed by survey responses and behavior in the simulation.ResultsSixty-three residents completed both surveys and the simulation. Post-survey responses indicated a shift toward decreased self-perceived familiarity with the DAA content compared to pre-survey responses. During the simulation, 22 (35%) residents were unsuccessful with intubation. Of these, 46% placed an LMA and 46% prepared for cricothyroidotomy. Nineteen residents did not attempt intubation. Of these, only 31% considered LMA placement, and 26% initiated cricothyroidotomy.ConclusionsMany anesthesiology residency training programs permit resident autonomy in managing emergent intubations OOOR. Residents self-reported familiarity with the content of and adherence to the DAA was higher than that observed during the simulation. Curriculum focused on comprehension of the DAA, as well as improving communication with higher-level physicians and specialists, may improve outcomes during OOORs.Electronic supplementary materialThe online version of this article (doi:10.1186/s12871-017-0387-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.