Collectively, these results demonstrate that the NCV particles can be used to reduce CRF without much affecting the anti-cancer properties of cisplatin.
RNA helicase, DDX3 is a multifunctional enzyme and is known to be associated with several diseases like HIV progression, brain and breast cancer. Some of the ring expanded nucleoside compounds such as REN: NZ51, fused di imidazodiazepine ring (RK33), (Z)-3-(5- (3-bromo benzylidene)-4-oxo-2-thioxothiazolidin-3-yl)-N-(2- hydroxy phenyl) propanamide compound (FE15) have been documented to inhibit DDX3 helicase activity. However, synthesis of these drugs is limited to few research groups. Prevalence of literature study, we found that doxorubicin form strong hydrogen bond interactions with crystallized form of DDX3 using in-silico molecular docking approach. To evaluate the biological inhibitory action of doxorubicin, we performed the ATPase activity assay and anti-cancer activity using H357 cancer cell lines. Results showed that doxorubicin continually declined the inorganic phosphate (Pi) release and inhibited the ATP hydrolysis by directly interacting with DDX3. Anticancer activity was detected by MTT assay. The half maximal inhibitory concentrations of doxorubicin (IC50) for H357 cancer cell line is 50 μM and also doxorubicin significantly down regulated the expression of DDX3. Taken together, our results demonstrate, that inhibition of DDX3 expression by using doxorubicin can be used as an ideal drug candidate to treat DDX3 associated cancer disorder by interacting with unique amino acid residues (Thr 198) and common amino acid residues (Tyr 200 and Thr 201).
Cyperus scariosus (R.Br) belongs to the family Cyperaceae and it has a diverse medicinal importance. To identify human cyclooxegenase-2 (COX-2) inhibitors from C. scariosus, the rhizome powder was exhaustively extracted with various solvents based on the increasing polarity. Based on the presence and absence of secondary metabolites, we have selected the methanolic extract to evaluate the anti-oxidant and anti-inflammatory activity. The same extract was further subjected to gas chromatography-mass spectroscopy (GC-MS) analysis to identify the active compounds. Binding affinities of these compounds towards anti-inflammatory protein COX-2 were analyzed using molecular docking interaction studies. Phytochemical analysis showed that methanol extract is positive for all secondary metabolites. The antioxidant activity of the C. scariosus rhizomes methanolic extract (CSRME) is half to that of ascorbic acid at 50 µg/ml. The anti-inflammatory activity of CSRME is higher than that of diclofenac sodium salt at high concentration, which is evident from the dose dependent inhibition of bovine serum albumin denaturation at 40 µg/ml–5 mg/ml. GC-MS analysis showed the presence of nine compounds, among all N-methyl-1-adamantaneacetamide and 1,5,diphenyl-2H-1,2,4- triazine form a hydrogen bond interactions with Ser-530 and Tyr-385 respectively and found similar interactions with crystal structure of diclofenac bound COX-2 protein. Benzene-1, 2-diol, 4-(4-bromo-3 chlorophenyl iminomethyl forms hydrogen bond interactions with Thr-199 and Thr-200 as similar to crystallized COX-2 protein with valdecoxib. Collectively our results suggest that CSRME contains medicinally important anti-inflammatory compounds and this justifies the use of this plant as a folklore medicine for preventing inflammation associated disorders.
Background:Cyperus scariosus R. Br and Cyperus rotundus L are widely used in ayurvedic preparation for the treatment of diabetes and other diseases. The early literature, so far, does not indicate the presence of any bioactive principle isolated from these plants.Objective:To identify free radical scavenging, anti-diabetic and anti- inflammatory principles from these two species.Materials and Methods:The bioassay guided fractionation and isolation of active constituents was done by chromatographic techniques. They also evaluated their anti-oxidant activity by DPPH and ABTS. The anti-diabetic activity was screened by α- glucosidase and α- amylase assays. Also, the further evaluation of in vitro anti-inflammatory activity using THP-1 monocytic cells and in vivo anti- inflammatory activity, was confirmed by carrageenan induced rat paw edema as model.Results:The activity guided isolation led to isolation of twelve compounds Which are: Stigmasterol[1], β- sitosterol[2], Lupeol[3], Gallic acid[4], Quercetin[5], β- amyrin[6], Oleanolic acid[7], β- amyrin acetate[8], 4- hydroxyl butyl cinnamate[9], 4- hydroxyl cinnamic acid[10], Caffeic acid,[11] and Kaempferol[12] respectively. Among the isolates, the compounds 4 and 5 displayed potent radical scavenging activity with an IC50 values of 0.43 and 0.067 ΅g/ml. The compounds 4, 5 and 10 showed significant anti-diabetic activities. while lupeol[3] showed potent IL-1 β activity inhibition in THP-1 monocytic cells and also displayed significant (p<0.0025) in vivo anti-inflammatory activity.Conclusion:Inbrief, we isolated twelve compounds from both the species. Collectively, our results suggested that aromatic compounds showed good anti-oxidant and anti-diabetic activities.SUMMARY The study investigates the free radical scavenging, α-glucosidase inhibitory and anti-inflammatory effects of constituents isolated from Indian sedges viz. C. scariosus and C. rotundus. The results indicated that phenolic compounds displayed potent fee radical scavenging activty and alpha-glucosidase inhibition activity. While terpene constituent, Lupeol[3] showed good IL-1β activity inhibition in THP-1 monocytic cells and also displayed significant (p<0.0025) in vivo anti inflammatory activity in carrageenan induced rat paw edema. However, further studies are required to know the exact molecular mechanism. Abbreviations used: DPPH: 2,2- Diphenyl-1-1-picryl hydrazyl, ABTS: 2,2-Azinobis-3-ethylbenzo thiazoline-6-sulfonic acid, THP-1: Human leukaemia monocytic cell line, IL-1β: Interleukin-1β, IC50-Inhibitory concentration 50%.
Objective: The aim of the present study is to prepare poloxamer based formulations of meloxicam to evaluate various parameters like pH stability, drug release and in vitro anticancer activities in cell lines with an intention to formulate injectable sustained biodegradable drug delivery system. Method: Various strengths of meloxicam formulations were prepared by using poloxamer 407. Prepared formulations were analyzed for drug content and pH stability by using HPLC. Drug release studies were tested by using USP dissolution testing apparatus. Further, we evaluated in vitro anticancer activity among these formulations by using sulphorhodamine-B (SRB) assay in two leukemia cell lines such as HL-60 and K-562 cell lines. Results: It showed that among all formulations, F1 formulation showed stability at pH 6.8, 7.0 and 7.4. It also showed 60% drug release and exhibited good anti cancer activity in HL-60 cell line with GI 50 <10 µg/ml as similar to adriamycin. Conclusion: Comparing these results, we concluded that F1 formulation showed good anticancer activity in cell lines, therefore further studies are necessary to confirm the mechanism of toxicity action studies. Thus these formulations has a potential to be a sustained release, passive targeted deliver system for meloxicam, with reduced side effects associated with the drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.