The Thermoacoustic Stirling Heat Engine(TASHE) designed by Backhaus, a device without moving parts which operates at a frequency of 85 Hz with an average pressure of 3 MPa that is capable of using sustainable energies, is applied to run an Inertance Pulse Tube Refrigerator(IPTR) with 1 W cooling power at 90 K. The coupling of these devices caused to eliminate all moving parts as well as miniaturizing the refrigerator to use for cooling superconducting magnets for MRI systems. A new method for the design of the IPTR performed by using numerical simulation of REGEN3.3. Moreover, to have a better vision of the overall configuration of IPTR and verify the Results of REGEN3.3, DeltaEC is used as an auxiliary software. Fortunately, both software results matched perfectly, and the performance of the IPTR was acoustically and thermodynamically ideal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.