A fundamental organizational principle of the primate motor system is cortical control of contralateral limb movements. Motor areas also appear to play a role in the control of ipsilateral limb movements. Several studies in monkeys have shown that individual neurons in primary motor cortex (M1) may represent, on average, the direction of movements of the ipsilateral arm. Given the increasing body of evidence demonstrating that neural ensembles can reliably represent information with a high temporal resolution, here we characterize the distributed neural representation of ipsilateral upper limb kinematics in both monkey and man. In two macaque monkeys trained to perform center-out reaching movements, we found that the ensemble spiking activity in M1 could continuously represent ipsilateral limb position. Interestingly, this representation was more correlated with joint angles than hand position. Using bilateral electromyography recordings, we excluded the possibility that postural or mirror movements could exclusively account for these findings. In addition, linear methods could decode limb position from cortical field potentials in both monkeys. We also found that M1 spiking activity could control a biomimetic brain-machine interface reflecting ipsilateral kinematics. Finally, we recorded cortical field potentials from three human subjects and also consistently found evidence of a neural representation for ipsilateral movement parameters. Together, our results demonstrate the presence of a high-fidelity neural representation for ipsilateral movement and illustrates that it can be successfully incorporated into a brain-machine interface.
SummaryInternal action models (IAMs) are brain templates for sensory-motor coordination underlying diverse behaviors [1]. An emerging theory suggests that impaired IAMs are a common theme in autism spectrum disorder (ASD) [2–4]. However, whether impaired IAMs occur across sensory systems and how they relate to the major phenotype of ASD, namely impaired social communication [5], remains unclear. Olfaction relies on an IAM known as the sniff response, where sniff magnitude is automatically modulated to account for odor valence [6–12]. To test the failed IAM theory in olfaction, we precisely measured the non-verbal non-task-dependent sniff response concurrent with pleasant and unpleasant odors in 36 children—18 with ASD and 18 matched typically developing (TD) controls. We found that whereas TD children generated a typical adult-like sniff response within 305 ms of odor onset, ASD children had a profoundly altered sniff response, sniffing equally regardless of odor valance. This difference persisted despite equal reported odor perception and allowed for 81% correct ASD classification based on the sniff response alone (binomial, p < 0.001). Moreover, increasingly aberrant sniffing was associated with increasingly severe ASD (r = −0.75, p < 0.001), specifically with social (r = −0.72, p < 0.001), but not motor (r < −0.38, p > 0.18), impairment. These results uncover a novel ASD marker implying a mechanistic link between the underpinnings of olfaction and ASD and directly linking an impaired IAM with impaired social abilities.
Nasal airflow is greater in one nostril than in the other because of transient asymmetric nasal passage obstruction by erectile tissue. The extent of obstruction alternates across nostrils with periodicity referred to as the nasal cycle. The nasal cycle is related to autonomic arousal and is indicative of asymmetry in brain function. Moreover, alterations in nasal cycle periodicity have been linked to various diseases. There is therefore need for a tool allowing continuous accurate measurement and recording of airflow in each nostril separately. Here we provide detailed instructions for constructing such a tool at minimal cost and effort. We demonstrate application of the tool in 33 right-handed healthy subjects, and derive several statistical measures for nasal cycle characterization. Using these measures applied to 24-hour recordings we observed that: 1: subjects spent slightly longer in left over right nostril dominance (left = 2.63 ± 0.89 hours, right = 2.17 ± 0.89 hours, t(32) = 2.07, p < 0.05), 2: cycle duration was shorter in wake than in sleep (wake = 2.02 ± 1.7 hours, sleep = 4.5 ± 1.7 hours, (t(30) = 5.73, p < 0.0001). 3: slower breathing was associated with a more powerful cycle (the extent of difference across nostrils) (r = 0.4, p < 0.0001), and 4: the cycle was influenced by body posture such that lying on one side was associated with greater flow in the contralateral nostril (p < 0.002). Finally, we provide evidence for an airflow cycle in each nostril alone. These results provide characterization of an easily obtained measure that may have diagnostic implications for neurological disease and cognitive state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.