The RUNX genes encode transcription factors involved in development and human disease. RUNX1 and RUNX3 are frequently associated with leukemias, yet the basis for their involvement in leukemogenesis is not fully understood. Here, we show that Runx1;Runx3 double-knockout (DKO) mice exhibited lethal phenotypes due to bone marrow failure and myeloproliferative disorder. These contradictory clinical manifestations are reminiscent of human inherited bone marrow failure syndromes such as Fanconi anemia (FA), caused by defective DNA repair. Indeed, Runx1;Runx3 DKO cells showed mitomycin C hypersensitivity, due to impairment of monoubiquitinated-FANCD2 recruitment to DNA damage foci, although FANCD2 monoubiquitination in the FA pathway was unaffected. RUNX1 and RUNX3 interact with FANCD2 independently of CBFβ, suggesting a nontranscriptional role for RUNX in DNA repair. These findings suggest that RUNX dysfunction causes DNA repair defect, besides transcriptional misregulation, and promotes the development of leukemias and other cancers.
The Fanconi anemia (FA) pathway is a pivotal genome maintenance network that orchestrates the repair of DNA interstrand crosslinks (ICLs). The tumor suppressors RUNX1 and RUNX3 were shown to regulate the FA pathway independent of their canonical transcription activities, by controlling the DNA damage-dependent chromatin association of FANCD2. Here, in further biochemical characterization, we demonstrate that RUNX3 is modified by PARP-dependent poly(ADP-ribosyl)ation (PARylation), which in turn allows RUNX binding to DNA repair structures lacking transcription-related RUNX consensus motifs. SILAC-based mass spectrometric analysis revealed significant association of RUNX3 with core DNA repair complexes, including PARP1, even in unstressed cells. After DNA damage, the increased interaction between RUNX3 and BLM facilitates efficient FANCD2 chromatin localization. RUNX-Walker motif mutations from breast cancers are impaired for DNA damage-inducible PARylation, unveiling a potential mechanism for FA pathway inactivation in cancers. Our results reinforce the emerging paradigm that RUNX proteins are tumor suppressors with genome gatekeeper function.
CRISPR-Cas clinical trials have begun, offering a first glimpse at how DNA and RNA targeting could enable therapies for many genetic and epigenetic human diseases. The speedy progress of CRISPR-Cas from discovery and adoption to clinical use is built on decades of traditional gene therapy research and belies the multiple challenges that could derail the successful translation of these new modalities. Here, we review how CRISPR-Cas therapeutics are translated from technological systems to therapeutic modalities, paying particular attention to the therapeutic cascade from cargo to delivery vector, manufacturing, administration, pipelines, safety, and therapeutic target profiles. We also explore potential solutions to some of the obstacles facing successful CRISPR-Cas translation. We hope to illuminate how CRISPR-Cas is brought from the academic bench toward use in the clinic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.