In our study, we will extend the domain of influence in order to cover the thermoelasticity of initially stressed bodies with voids. In what follows, we prove that, for a finite time t > 0 , the displacement field u i , the dipolar displacement field φ j k , the temperature θ and the change in volume fraction ϕ generate no disturbance outside a bounded domain B.
With a wide applicability in solid state mechanics, the theory of continuous dipolar materials with voids is a distinctive part of microstructure theory, a theory that emerged with the necessity of eliminating the discrepancies between the classical theory and its experimental applications. These inconsistencies are caused by the influence of the microstructure of materials on the general deformations of the bodies, such as ceramics, graphite or polymers. In the present work, we study the mixed boundary value problem with initial data for the thermoelasticity of three-phase-lag dipolar materials with voids, in order to obtain the corresponding constitutive laws, using the same method as in the classical elasticity. By going deeper into the study of these materials, we achieve a uniqueness result and a reciprocal relation, using less common methods, like the dissipative inequality regarding the result of uniqueness. Along with these aspects, we demonstrate a variational principle for anisotropic and non-homogeneous materials, derived from a well-known variational principle, but studied in the context of thermoelasticity of three-phase-lag dipolar materials with voids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.