Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emissions and loss of biodiversity1. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value2. Faba bean (Vicia faba L.) has a high yield potential and is well suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has expanded to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, although with substantial copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association analysis to dissect the genetic basis of seed size and hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate the improvement of sustainable protein production across the Mediterranean, subtropical and northern temperate agroecological zones.
Key message We identified marker-trait associations for key faba bean agronomic traits and genomic signatures of selection within a global germplasm collection. Abstract Faba bean (Vicia faba L.) is a high-protein grain legume crop with great potential for sustainable protein production. However, little is known about the genetics underlying trait diversity. In this study, we used 21,345 high-quality SNP markers to genetically characterize 2678 faba bean genotypes. We performed genome-wide association studies of key agronomic traits using a seven-parent-MAGIC population and detected 238 significant marker-trait associations linked to 12 traits of agronomic importance. Sixty-five of these were stable across multiple environments. Using a non-redundant diversity panel of 685 accessions from 52 countries, we identified three subpopulations differentiated by geographical origin and 33 genomic regions subjected to strong diversifying selection between subpopulations. We found that SNP markers associated with the differentiation of northern and southern accessions explained a significant proportion of agronomic trait variance in the seven-parent-MAGIC population, suggesting that some of these traits were targets of selection during breeding. Our findings point to genomic regions associated with important agronomic traits and selection, facilitating faba bean genomics-based breeding.
During the last two decades, whole-genome sequencing has revolutionized genetic research in all kingdoms, including fungi. More than 1000 fungal genomes have been submitted to sequence databases, mostly obtained through second generation short-read DNA sequencing. As a result, highly fragmented genome drafts have typically been obtained. However, with the emergence of third generation long-read DNA sequencing, the assembly challenge can be overcome and highly contiguous assemblies obtained. Such attractive results, however, are extremely dependent on the ability to extract highly purified high molecular weight (HMW) DNA. Extraction of such DNA is currently a significant challenge for all species with cell walls, not least fungi. In this study, four isolates of filamentous ascomycetes (Apiospora pterospermum, Aspergillus sp. (subgen. Cremei), Aspergillus westerdijkiae, and Penicillium aurantiogriseum) were used to develop extraction and purification methods that result in HMW DNA suitable for third generation sequencing. We have tested and propose two straightforward extraction methods based on treatment with either a commercial kit or traditional phenol-chloroform extraction both in combination with a single commercial purification method that result in high quality HMW DNA from filamentous ascomycetes. Our results demonstrated that using these DNA extraction methods and coverage, above 75 x of our haploid filamentous ascomycete fungal genomes result in complete and contiguous assemblies.
Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emission and loss of biodiversity. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value. Faba bean (Vicia faba L.) has a high yield potential and is well-suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has grown to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, though with significant copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association (GWA) analysis to dissect the genetic basis of hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate improvement of sustainable protein production across Mediterranean, subtropical, and northern temperate agro-ecological zones.
The phylogenetic relationship of the Arthrinium genus has changed throughout the years. For many years, the Arthrinium genus included the Apiospora genus as well. New evidence has now showed that these two genera in fact are phylogenetically different and belong to two different clades. Here we present the first genome draft within the Arthrinium genus. This genome was sequenced using the MinION platform from Oxford Nanopore Technologies and the assembly was contiguous. The assembly comprises of ten contigs totaling 39.8 Mb with an N50 length of 7.9. In the assembly, 11,602 genes were predicted whereof 10,784 were functionally annotated. A total of 37 rRNA genes were observed in the assembly and repeat elements spanning 7.39% of the genome were found. A total of 99 secondary metabolite gene clusters were predicted, showing a high potential of novel secondary metabolites. This genome sequence will not only be useful for further investigation of the Arthrinium clade, but also for discovery of novel secondary metabolite compounds that could be of high interest for the food, agricultural, or pharmaceutical industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.