Processed food products of animal origin raise questions related to industrial safety and human health protection. This paper aimed to optimize and validate a real-time, sensitive, and accurate PCR method for the detection and quantification of meat species in selected processed meat products: chicken sausages, beef bologna, and pork bologna. A common detection limit of 8 DNA copies was established for each sample, corresponding to 0.1% for beef and pork and 0.2% for chicken. For the limit of quantification, dilutions of 20 copies of DNA for the bovine and pig species and 50 copies of DNA for the chicken species were performed. Specificity and selectivity tests in six replicates each showed no extraneous meat species, in line with the label. Repeatability was assessed in six replicates, both quantitatively and qualitatively, by the same analyst, on the same day, and with the same equipment. The results showed that beef bologna contained 84.49% beef meat, pork bologna 92.8% pork meat, and chicken sausages 95.14% chicken meat. The reproducibility results obtained by two analysts, on different days, for each sample were very similar. The real-time PCR technique can be used as a tool in internal and public safety control to improve industrial safety and human health protection.
An important factor in the detection of falsification is the control of the composition of the meat at each stage of manufacturing the product. The PCR method is based on the study of proteins and meat nucleic acids used in food for the detection of animal species. Another technique is the Elisa method that works on the principle of identification and measurement of the quantity of molecules in a sample. There are several types of Elisa to increase specificity due to differences in structure and sample characteristics. By comparing the two methods used to identify the processed meat product species, Real Time PCR had the highest prediction as results. However, the Elisa method is more time efficient and easier to use. Real Time PCR is effective in identifying processed meat products that require low detection. The Elisa Kit is useful because of the ease of use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.