We analyze the lumpability of linear systems on Banach spaces, namely, the possibility of projecting the dynamics by a linear reduction operator onto a smaller state space in which a self-contained dynamical description exists. We obtain conditions for lumpability of dynamics defined by unbounded operators using the theory of strongly continuous semigroups. We also derive results from the dual space point of view using sun dual theory. Furthermore, we connect the theory of lumping to several results from operator factorization. We indicate several applications to particular systems, including delay differential equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.