In the midbrain ventral tegmental area (VTA), both dopaminergic and nondopaminergic neural substrates mediate various behavioural reward phenomena. VTA GABAergic neurons are anatomically positioned to influence the activity of both the mesolimbic dopamine system and nondopamine efferents from the VTA. In order to examine the possible functional role of VTA GABA(A) receptors in neural reward processes, we performed discrete, bilateral microinjections of the GABA(A) receptor agonist, muscimol, or the GABA(A) receptor antagonist, bicuculline, into the VTA. Using a fully counterbalanced, unbiased conditioned place-preference paradigm, we demonstrate that activation of VTA GABA(A) receptors, with the GABA(A) receptor agonist muscimol (5--50 ng/microL), or inhibition of VTA GABA(A) receptors, with the GABA(A) receptor antagonist bicuculline (5--50 ng/microL), both produce robust rewarding effects. Furthermore, these rewarding effects can be pharmacologically dissociated: blockade of dopamine receptors with a dopamine receptor antagonist, alpha-flupenthixol (0.8 mg/kg; i.p.), or concurrent activation of VTA GABA(B) receptors with a GABA(B) receptor agonist, baclofen (70 ng/microL), blocked the rewarding properties of the GABA(A) receptor agonist, but had no effect on the rewarding properties of the GABA(A) receptor antagonist. These results suggest that, within the VTA, a single GABA(A) receptor substrate controls bidirectional reward signalling between dopaminergic and nondopaminergic brain reward systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.