Obtained results demonstrated a decrease activity in synapsin I, and accumulation of VGLUT2 in the striatum after blockade of audiogenic seizure (AGS) by SL 327 that could lead to inhibition of glutamate release. While in the striatum GAD65/67 level was diminished, in the substantia nigra GAD65/67 was increased showing enhanced inhibitory output to the compact part of the substantia nigra. Analysis of dopaminergic system showed a significant reduction of tyrosine hydroxylase activity and expression in the substantia nigra, and decreased D1 and D2 receptor expression in the striatum. In summary, we propose that changes in the nigrostriatal system could be mediated by inhibitory effect of SL 327 on AGS expression.
As in mammals, epithelium of the amphibian urinary bladder forms a barrier to pathogen entry and is a first line of defense against penetrating microorganisms. We investigated the effect of Escherichia coli LPS on generation of nitric oxide (NO), a critically important mediator during infectious processes, by primary cultured frog (Rana temporaria) urinary bladder epithelial cells (FUBEC). It was found that FUBEC constitutively express Toll-like receptor 4 (TLR4), a receptor of LPS, and respond to LPS (10 μg/ml) by stimulation of inducible nitric oxide synthase (iNOS) mRNA/protein expression and NOS activity measured by nitrite produced in the culture medium and by citrulline assay. We characterized uptake of l-arginine, a precursor in NO synthesis, by FUBEC and showed that it is mediated mainly by the y+ cationic amino acid transport system. LPS stimulated l-arginine uptake, and this effect was blocked by the iNOS inhibitor 1400W. Arginase II was found to be expressed in FUBEC. Inhibition of arginase activity by (S)-(boronoethyl)-l-cysteine increased generation of NO, suggesting contribution of arginase to NO production via competing with NOS for the substrate. LPS altered neither total arginase activity nor arginase II expression. Among epithelial cells, phagocytic macrophage-like cells were observed, but they did not contribute to LPS-induced NO production. These data demonstrate that amphibian urinary bladder epithelial cells recognize LPS and respond to it by increased generation of NO via stimulation of iNOS expression and l-arginine uptake, which appears to be essential for the regulation of the innate immune response and the inflammation in bladder epithelium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.