Acute insulin resistance occurs after injury, hemorrhage, infection, and critical illness. However, little is known about the development of this acute insulin-resistant state. In the current study, we found that insulin resistance develops rapidly in skeletal muscle, with the earliest insulin signaling defects at 60 min. However, defects in insulin signaling were measurable even earlier in liver, by as soon as 15 min after hemorrhage. To begin to understand the mechanisms for the development of acute insulin resistance, serine phosphorylation of insulin receptor substrate (IRS)-1 and c-Jun N-terminal kinase phosphorylation/activation was investigated. These markers (and possible contributors) of insulin resistance were increased in the liver after hemorrhage but not measurable in skeletal muscle. Because glucocorticoids are important counterregulatory hormones responsible for glucose homeostasis, a glucocorticoid synthesis inhibitor, metyrapone, and a glucocorticoid receptor antagonist, RU486, were administered to adult rats prior to hemorrhage. In the liver, the defects of insulin signaling after hemorrhage, including reduced tyrosine phosphorylation of the insulin receptor and IRS-1, association between IRS-1 and phosphatidylinositol 3-kinase and serine phosphorylation of Akt in response to insulin were not altered by pretreatment of rats with metyrapone or RU486. In contrast, hemorrhage-induced defects in insulin signaling were dramatically reversed in skeletal muscle, indicating a prevention of insulin resistance in muscle. These results suggest that distinct mechanisms for hemorrhage-induced acute insulin resistance are present in these two tissues and that glucocorticoids are involved in the rapid development of insulin resistance in skeletal muscle, but not in the liver, after hemorrhage.
Acute insulin resistance can develop following critical illness and severe injury, and the mortality of critically ill patients can be reduced by intensive insulin therapy. Thus, compensating for the insulin resistance in the clinical care setting is important. However, the molecular mechanisms that lead to the development of acute injury/infection-associated insulin resistance are unknown, and the development of acute insulin resistance is much less studied than chronic disease-associated insulin resistance. An animal model of injury and blood loss was utilized to determine whether acute skeletal muscle insulin resistance develops following injury, and surgical trauma in the absence of hemorrhage had little effect on insulin-mediated signaling. However, following hemorrhage, there was an almost complete loss of insulin-induced Akt phosphorylation in triceps, and severely decreased tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1. The severity of insulin resistance was similar in triceps and extensor digitorum longus muscles, but was more modest in diaphragm, and there was little change in insulin signaling in cardiac muscle following hemorrhage. Since skeletal muscle is an important insulin target tissue and accounts for much of insulin-induced glucose disposal, it is important to determine its role in injury/infection-induced hyperglycemia. This is the first report of an acute development of skeletal muscle insulin signaling defects. The presented data indicates that the defects in insulin signaling occurred rapidly, were reversible and more severe in some skeletal muscles, and did not occur in cardiac muscle. with insulin resistance, skeletal muscle, adipose tissue, and liver become insulin resistant. However, it is not known which of these three main insulin target tissues become insulin resistant acutely following injury. Since skeletal muscle is a main insulin target tissue, and accounts for approximately 80% of insulin-induced glucose disposal in the human body (19), it is important to understand its role in the acute development of insulin resistance. In the current study, we utilized a rat model of surgical trauma and hemorrhage to determine the development, timing, and muscle selectivity of hemorrhage-induced skeletal muscle insulin resistance. MATERIALS AND METHODS Reagents and MaterialsAll reagents and materials were obtained from Fisher Scientific (Pittsburgh, PA, USA) or Sigma-Aldrich (St. Louis, MO, USA), unless otherwise noted. Animal Model of Surgical Trauma and HemorrhageAll procedures were carried out in accordance with the guidelines set forth in the Guide for the Care and Use of Laboratory Animals and the National Institutes of Health. The experimental protocol was approved by the Institutional Animal Care and Use Committee of the University of Alabama at Birmingham. A model of surgical trauma and hemorrhage in the rat, as previously described (6,7), was used with modifications. Briefly, male SpragueDawley rats received continuous inhalation of low levels of ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.