Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS.Recent studies have demonstrated that significant axonal injury also occurs in MS patients and correlates with neurological dysfunction, but it is not known whether this neuronal damage is a primary disease process, or occurs only secondary to demyelination. In the current studies, neurotropic strains of mouse hepatitis virus (MHV) that induce meningitis, encephalitis, and demyelination in the CNS, an animal model of MS, were used to evaluate mechanisms of axonal injury. The pathogenic properties of genetically engineered isogenic spike protein recombinant demyelinating and nondemyelinating strains of MHV were compared. Studies demonstrate that a demyelinating strain of MHV causes concomitant axonal loss and macrophage-mediated demyelination. The mechanism of axonal loss and demyelination in MHV infection is dependent on successful transport of virus from gray matter to white matter using the MHV host attachment spike glycoprotein. Our data show that axonal loss and demyelination can be independent direct viral cytopathic events, and suggest that similar direct axonal damage may occur in MS. These results have important implications for the design of neuroprotective strategies for CNS demyelinating disease, and our model identifies the spike protein as a therapeutic target to prevent axonal transport of neurotropic viruses.
Overexpression of the HMGA2 gene is a common feature of neoplastic cells both in experimental and human models. Intragenic and extragenic HMGA2 rearrangements responsible for HMGA2 gene overexpression have been frequently detected in human benign tumours of mesenchymal origin. To better understand the role of HMGA2 overexpression in human tumorigenesis, we have generated transgenic mice carrying the HMGA2 gene under the transcriptional control of the cytomegalovirus promoter. High expression of the transgene was demonstrated in all the mouse tissues analysed, whereas no expression of the endogenous HMGA2 gene was detected in the same tissues from wild-type mice. In this study, two indipendent lines of transgenic mice have been generated. By 6 months of age, 85% of female animals of both transgenic lines developed pituitary adenomas secreting prolactin and growth hormone. The transgenic males developed the same phenotype with a lower penetrance (40%) and a longer latency period (about 18 months). Therefore, these data demonstrate that the overexpression of HMGA2 leads to the onset of mixed growth hormone/ prolactin cell pituitary adenomas. These transgenic mice may represent an important tool for the study of this kind of neoplasia.
Purpose: This study is directed at identifying the cell source(s) of immunomodulatory cytokines in highgrade gliomas and establishing whether the analysis of associated markers has implications for tumor grading.Experimental Design: Glioma specimens classified as WHO grade II-IV by histopathology were assessed by gene expression analysis and immunohistochemistry to identify the cells producing interleukin (IL)-10, which was confirmed by flow cytometry and factor secretion in culture. Finally, principal component analysis (PCA) and mixture discriminant analysis (MDA) were used to investigate associations between expressed genes and glioma grade.Results: The principle source of glioma-associated IL-10 is a cell type that bears phenotype markers consistent with M2 monocytes but does not express all M2-associated genes. Measures of expression of the M2 cell markers CD14, CD68, CD163, and CD204, which are elevated in high-grade gliomas, and the neutrophil/myeloid-derived suppressor cell (MDSC) subset marker CD15, which is reduced, provide the best index of glioma grade.Conclusions: Grade II and IV astrocytomas can be clearly differentiated on the basis of the expression of certain M2 markers in tumor tissues, whereas grade III astrocytomas exhibit a range of expression between the lower and higher grade specimens. The content of CD163 þ cells distinguishes grade III astrocytoma subsets with different prognosis.
Cell surface adhesion molecules are crucial for the development and/or pathogenesis of various diseases including cancer. CD44 has received much interest as a major adhesion molecule that is involved in tumor progression. We have previously demonstrated that the ectodomain of CD44 undergoes proteolytic cleavage by membrane-associated metalloproteases in various tumor cell lines. The remaining membranebound CD44 cleavage product can be detected using antibodies against the cytoplasmic domain of CD44 (anti-CD44cyto antibody). However, the cleavage of CD44 in primary human tumors has not been investigated. Using Western blots with anti-CD44cyto antibody to assay human tumor tissues, we show that the CD44 cleavage product can be detected in 58% (42 of 72) of gliomas but not in normal brain. Enhanced CD44 cleavage was also found in 67% (28 of 42) of breast carcinomas, 45% (5 of 11) of non-small cell lung carcinomas, 90% (9 of 10) of colon carcinomas, and 25% (3 of 12) of ovarian carcinomas. Tumors expressing a CD44 splice variant showed a significantly higher incidence of enhanced CD44 cleavage. CD44 is a widely distributed cell-surface adhesion molecule that is implicated in a diverse range of physiological and pathological processes, including lymphocyte homing and activation, cell-matrix interactions, cell migration, and the regulation of tumor growth and metastasis.1 The gene encoding the CD44 protein contains 20 exons of which up to 10 variant exons encoding a portion of the ectodomain are alternatively spliced in various combinations, thereby generating numerous CD44 splice variant isoforms (CD44v).1,2 The standard CD44 (CD44s) lacks all variant exons. All forms of CD44 are heavily glycosylated to varying degrees. The diversity of CD44 functions is compounded by its variable structure.3-5 The expression of CD44 or its variants has been shown to be associated with tumor progression; however, the data concerning CD44v forms is controversial for some tumors.1,6 -13 Thus, the exact role of CD44 in the progression of human tumors remains obscure and increased interest has been directed at elucidating the possible mechanisms by which CD44 plays a role in human tumors.The extracellular domain of a number of membrane proteins can be proteolytically cleaved on the extracytoplasmic side.14 The proteolytic cleavage of membrane proteins has recently emerged as a key mechanism underlying their functional regulation. 15 We have previously demonstrated a proteolysis-based model as one mechanism involved in the regulation of CD44 function. 16 -18 Our studies showed that CD44 is proteolytically cleaved at the ectodomain through membrane-associated metalloproteases in various cancer cell lines to produce a membrane-bound cleavage product of ϳ25 kd.16 This CD44 ectodomain cleavage was found to play a critical role in CD44-mediated tumor cell migration by regulating the dynamic interaction between CD44 and the extracel-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.