DC3 brought together simultaneous measurements of storm kinematics, structure, electrical activity, and chemistry to improve our knowledge of how thunderstorms affect the chemical composition of the troposphere.
[1] Dual-Doppler and polarimetric radar observations are used to analyze two mesoscale convective systems (MCSs) that occurred during the Tropical Rainfall Measuring Mission Large-Scale Biosphere-Atmosphere field campaign. The MCSs formed in different meteorological regimes, based on profiles of atmospheric wind and thermodynamic data. The first MCS event (26 January 1999) was a squall line that formed in low-level easterly flow and had an intense leading line of convection. In contrast, the 25 February 1999 MCS formed in low-level westerly flow and was best characterized by stratiform precipitation with embedded convective elements. The radar analyses suggest that the MCSs were distinct in terms of overall vertical structure characteristics. In particular, polarimetric radar cross sections indicated the presence of an active mixed phase zone in the easterly MCS that was largely absent in the westerly case. The easterly MCS had considerably more precipitation ice in the middle to upper troposphere compared to the westerly MCS. Composite analyses showed that the easterly MCS had higher peak reflectivities and a smaller reflectivity gradient above the 0ЊC level in convective regions of the storm compared to the westerly MCS event. Moreover, mean profiles of both vertical air motion and vertical mass transport in the convective portion of the easterly MCS were larger (over a factor of 2 at some heights below the 0Њ C level) than those in the westerly event. These observations suggest that the easterly and westerly wind regimes in the southwest Amazon region produce convection with different vertical structure characteristics, similar to regimes elsewhere in the global tropics (e.g., maritime continent). INDEX TERMS: 3314
[1] Horizontal and line-normal, vertical cross-sections and composite images of Dallas-Fort Worth Lightning Detection and Ranging (LDAR II) VHF radiation sources and radar reflectivity over a 30-min period provide a unique perspective on lightning pathways within a leading-line, trailing-stratiform (LLTS) mesoscale convective system (MCS) on 16 June 2002. The overwhelming majority of VHF lightning sources occurred within the leading convective line in a bimodal pattern in the vertical. Assuming that VHF source density maxima were most likely associated with positive charge, then the LDAR II observations suggest that the gross charge structure of the convective region of the MCS was characterized by a tripole with net positive charge centered at 4.5 km AGL (3°C) and 9.5 km AGL (À35°C) and net negative charge centered roughly in the relative minimum of the VHF source density maximum at 7 km AGL (À17°C). A persistent lightning pathway and inferred positive charge zone sloped rearward (by 40-50 km) and downward (by 4-5 km) from the upper VHF source maximum in the convective line, through the transition zone, and into the radar bright band of the stratiform region. In the stratiform region, VHF lightning sources and inferred positive charge were concentrated in three layers centered at 4.5, 6, and 9 km AGL (2°C, À11°C, and À31°C, respectively), consistent with past electric field studies of symmetric LLTS MCSs. Positive cloud-to-ground lightning flashes in the stratiform region were initiated in the convective line and followed the slanting pathway from the top of convective cores to the stratiform precipitation, where they were horizontally extensive, layered, and highly branched. The sloping lightning pathway was identical to hypothetical trajectories taken by snow particles. These observations provide further support for the advection of charge on snow along the sloping pathway and the in situ generation of charge in the horizontal lightning layers as primary contributors to electrification and positive lightning production rearward of the convective line.
One of the primary scientific objectives of the Maritime Continent Thunderstorm Experiment was to study cloud electrification processes in tropical island convection, in particular, the coupling between ice phase precipitation and lightning production. To accomplish this goal, a C-band polarimetric radar was deployed in the Tropics (11.6ЊS, 130.8ЊE) for the first time, accompanied by a suite of lightning measurements. Using observations of the propagation-corrected horizontal reflectivity and differential reflectivity, along with specific differential phase, rain and ice masses were estimated during the entire life cycle of an electrically active tropical convective complex (known locally as Hector) over the Tiwi Islands on 28 November 1995. Hector's precipitation structure as inferred from these raw and derived radar fields was then compared in time and space to the measured surface electric field, cloud-to-ground (CG) and total lightning flash rates, and ground strike locations. During Hector's developing stage, precipitating convective cells along island sea breezes were dominated by warm rain processes. No significant electric fields or lightning were associated with this stage of Hector, despite substantial rainfall rates. Aided by gust front forcing, a cumulus merger process resulted in larger, taller, and more intense convective complexes that were dominated by mixed-phase precipitation processes. During the mature phase of Hector, lightning and the surface electric field were strongly correlated to the mixed phase ice mass and rainfall. Merged convective complexes produced 97% of the rainfall and mixed-phase ice mass and 100% of the CG lightning. As Hector dissipated, lightning activity rapidly ceased. As evidenced from the multiparameter radar observations, the multicell nature of Hector resulted in the continuous lofting of supercooled drops to temperatures between Ϫ10Њ and Ϫ20ЊC in discrete updraft cores during both the early and mature phases. The freezing of these drops provided instantaneous precipitation-sized ice particles that may have subsequently rimed and participated in thunderstorm electrification via the noninductive charging mechanism.
In this study, it is hypothesized that the mesoscale environment can indirectly control the cloud-to-ground (CG) lightning polarity of severe storms by directly affecting their structural, dynamical, and microphysical properties, which in turn directly control cloud electrification and CG flash polarity. A more specific hypothesis, which has been supported by past observational and laboratory charging studies, suggests that broad, strong updrafts and associated large liquid water contents in severe storms lead to enhanced positive charging of graupel and hail via the noninductive charging mechanism, the generation of an inverted charge structure, and increased positive CG lightning production. The corollary is that environmental conditions favoring these
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.