Chloracne is commonly observed in humans exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); yet, the mechanism of toxicity is not well understood. Using normal human epidermal keratinocytes, we investigated the mechanism of TCDD-mediated enhancement of epidermal differentiation by integrating functional genomic, metabolomic, and biochemical analyses. TCDD increased the expression of 40% of the genes of the epidermal differentiation complex found on chromosome 1q21 and 75% of the genes required for de novo ceramide biosynthesis. Lipid analysis demonstrated that eight of the nine classes of ceramides were increased by TCDD, altering the ratio of ceramides to free fatty acids. TCDD decreased the expression of the glucose transporter, SLC2A1, and most of the glycolytic transcripts, followed by decreases in glycolytic intermediates, including pyruvate. NADH and Krebs cycle intermediates were decreased, whereas NAD(+) was increased. Mitochondrial glutathione (GSH) reductase activity and the GSH/glutathione disulfide ratio were decreased by TCDD, ultimately leading to mitochondrial dysfunction, characterized by decreased inner mitochondrial membrane potential and ATP production, and increased production of the reactive oxygen species (ROS), hydrogen peroxide. Aryl hydrocarbon receptor (AHR) antagonists blocked the response of many transcripts to TCDD, and the endpoints of decreased ATP production and differentiation, suggesting regulation by the AHR. Cotreatment of cells with chemical antioxidants or the enzyme catalase blocked the TCDD-mediated acceleration of keratinocyte cornified envelope formation, an endpoint of terminal differentiation. Thus, TCDD-mediated ROS production is a critical step in the mechanism of this chemical to accelerate keratinocyte differentiation.
Keratinocyte terminal differentiation is the process that ultimately forms the epidermal barrier that is essential for mammalian survival. This process is controlled, in part, by signal transduction and gene expression mechanisms, and the epidermal growth factor receptor (EGFR) is known to be an important regulator of multiple epidermal functions. Using microarray analysis of a confluent cell density-induced model of keratinocyte differentiation, we identified 2,676 genes that are regulated by epidermal growth factor (EGF), a ligand of the EGFR. We further discovered, and separately confirmed by functional assays, that EGFR activation abrogates all of the known essential processes of keratinocyte differentiation by 1) decreasing the expression of lipid matrix biosynthetic enzymes, 2) regulating numerous genes forming the cornified envelope, and 3) suppressing the expression of tight junction proteins. In organotypic cultures of skin, EGF acted to impair epidermal barrier integrity, as shown by increased transepidermal water loss. As defective epidermal differentiation and disruption of barrier function are primary features of many human skin diseases, we used bioinformatic analyses to identify genes that are known to be associated with skin diseases. Compared with non-EGF-regulated genes, EGF-regulated genes were significantly enriched for skin disease genes. These results provide a systems-level understanding of the actions of EGFR signaling to inhibit keratinocyte differentiation, providing new insight into the role of EGFR imbalance in skin pathogenesis.
Background: Development of the epidermal permeability barrier (EPB) is essential for neonatal life. Defects in this barrier are found in many skin diseases such as atopic dermatitis.Objective: We investigated the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the development and function of the EPB.Methods: Timed-pregnant C57BL/6J mice were gavaged with corn oil or TCDD (10 μg/kg body weight) on gestation day 12. Embryos were harvested on embryonic day (E) 15, E16, E17, and postnatal day (PND) 1.Results: A skin permeability assay showed that TCDD accelerated the development of the EPB, beginning at E15. This was accompanied by a significant decrease in transepidermal water loss (TEWL), enhanced stratification, and formation of the stratum corneum (SC). The levels of several ceramides were significantly increased at E15 and E16. PND1 histology revealed TCDD-induced acanthosis and epidermal hyperkeratosis. This was accompanied by disrupted epidermal tight junction (TJ) function, with increased dye leakage at the terminal claudin-1–staining TJs of the stratum granulosum. Because the animals did not have enhanced rates of TEWL, a commonly observed phenotype in animals with TJ defects, we performed tape-stripping. Removal of most of the SC resulted in a significant increase in TEWL in TCDD-exposed PND1 pups compared with their control group.Conclusions: These findings demonstrate that in utero exposure to TCDD accelerates the formation of an abnormal EPB with leaky TJs, warranting further study of environmental exposures, epithelial TJ integrity, and atopic disease.Citation: Muenyi CS, Leon Carrion S, Jones LA, Kennedy LH, Slominski AT, Sutter CH, Sutter TR. 2014. Effects of in utero exposure of C57BL/6J mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin on epidermal permeability barrier development and function. Environ Health Perspect 122:1052–1058; http://dx.doi.org/10.1289/ehp.1308045
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.