The pH dependence of the peptidolytic reaction of recombinant human immunodeficiency virus type 1 protease has been examined over a pH range of 3-7 for four oligopeptide substrates and two competitive inhibitors. The pK values obtained from the pKis vs pH profiles for the unprotonated and protonated active-site aspartyl groups, Asp-25 and Asp-25', in the monoprotonated enzyme form were 3.1 and 5.2, respectively. Profiles of log V/K vs pH for all four substrates were "bell-shaped" in which the pK values for the unprotonated and protonated aspartyl residues were 3.4-3.7 and 5.5-6.5, respectively. Profiles of log V vs pH for these substrates were "wave-shaped" in which V was shifted to a constant lower value upon protonation of a residue of pK = 4.2-5.2. These results indicate that substrates bind only to a form of HIV-1 protease in which one of the two catalytic aspartyl residues is protonated. Solvent kinetic isotope effects were measured over a pH (D) range of 3-7 for two oligopeptide substrates, Ac-Arg-Ala-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2 and Ac-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2. The pH-independent value for DV/K was 1.0 for both substrates, and DV = 1.5-1.7 and 2.2-3.2 at low and high pH (D), respectively. The attentuation of both V and DV at low pH (D) is consistent with a change in rate-limiting step from a chemical one at high pH (D) to one in which a product release step or an enzyme isomerization step becomes partly rate-limiting at low pH (D). Proton inventory data is in accord with the concerted transfer of two protons in the transition state of a rate-limiting chemical step in which the enzyme-bound amide hydrate adduct collapses to form the carboxylic acid and amine products.
The peptidolytic reaction of HIV-1 protease has been investigated by using four oligopeptide substrates, Ac-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2, Ac-Arg-Ala-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2, Ac-Ser-Gln-Ser-Tyr-Pro-Val-Val-NH2, and Ac-Arg-Lys-Ile-Leu-Phe-Leu-Asp-Gly-NH2, that resemble two cleavage sites found within the naturally occurring polyprotein substrates Pr55gag and Pr160gag-pol. The values for the kinetic parameters V/KEt and V/Et were 0.16-7.5 mM-1 s-1 and 0.24-29 s-1, respectively, at pH 6.0, 0.2 M NaCl, and 37 degrees C. By use of a variety of inorganic salts, it was concluded that the peptidolytic reaction is nonspecifically activated by increasing ionic strength. V/K increased in an apparently parabolic fashion with increasing ionic strength, while V was either increased or decreased slightly. From product inhibition studies, the kinetic mechanism of the protease is either random or ordered uni-bi, depending on the substrate studied. The reverse reaction or a partial reverse reaction (as measured by isotope exchange of the carboxylic product into substrate) was negligible for most of the oligopeptide substrates, but the enzyme catalyzed the formation of Ac-Ser-Gln-Asn-Tyr-Phe-Leu-Asp-Gly-NH2 from the products Ac-Ser-Gln-Asn-Tyr and Phe-Leu-Asp-Gly-NH2. The protease-catalyzed exchange of an atom of 18O from H2 18O into the re-formed substrates occurred at a rate which was 0.01-0.12 times that of the forward peptidolytic reaction. The results of these studies are in accord with the formation of a kinetically competent enzyme-bound amide hydrate intermediate, the collapse of which is the rate-limiting chemical step in the reaction pathway.
The gag and pol genes of the human immunodeficiency virus type 1 (HIV-1) (ref. 1) are translated as two polyproteins, Pr55gag and Pr160gag-pol (refs 2-6), which are subsequently cleaved by the action of a virus-encoded protease into the four structural gag proteins of the virion core (p17, p24, p7 and p6) and the pol-encoded enzymes essential for retrovirus replication (protease, reverse transcriptase, ribonuclease H, and endonuclease). Mutational inactivation of the proteases of HIV-1 and other retroviruses results in immature, non-infectious virions, indicating that exogenous inhibition of the protease may represent an attractive approach to anti-AIDS therapy. Here we demonstrate that synthetic peptide analogues, which are potent inhibitors of purified HIV-1 protease, inhibit the processing of the viral polyproteins in cultures of HIV-1-infected T lymphocytes and attenuate viral infectivity.
Inhibitors of the protease from human immunodeficiency virus 1 (HIV-1) were designed, synthesized, and kinetically characterized. Analogues of a heptapeptide substrate of HIV-1 protease with sequence similar to the pl7-p24 cleavage site in the natural substrate, Pr55519, were synthesized in which the scissile dipeptide bond was replaced with bonds from six categories of stable mimics of an aspartic proteolysis transition state or intermediate. These mimics included an analogue of statine, hydroxyethylene isosteres, two categories of phosphinic acids, a reduced amide isostere, and an a,a-difluoroketone. The resulting peptide analogues were linear competitive inhibitors of purified recombinant HIV-1 protease with inhibition constants ranging from 18 nM to 40 ,uM depending on the type of inhibitor. A truncated inhibitor, an analogue of a hexapeptide, retained full inhibitory potency. The most potent inhibitors, containing the hydroxyethylene isostere, effectively blocked the proteolytic processing of a recombinant form of Pr55s'9 by HIV-1 protease in a cell-free assay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.