We have demonstrated that caspase-1-deficient (caspase-1
Fractalkine (CX3CL1) is expressed on injured endothelial cells and is a potent chemoattractant and adhesion molecule for macrophages carrying the fractalkine receptor (CX3CR1). The aim of this study was to investigate the role of CX3CL1, and its ligand CX3CR1, in ischemic acute renal failure (ARF) in mice. On immunoblotting, CX3CL1 protein expression in the kidney increased markedly in ischemic ARF. On immunofluorescence staining, the intensity of CX3CL1 staining in blood vessels was significantly more prominent in ischemic ARF compared with controls. A specific anti-CX3CR1 antibody (25 microg i.p. 1 h before induction of ischemia) was functionally and histologically protective against ischemic ARF. CX3CR1 is predominantly expressed on macrophages. Macrophage infiltration in the kidney in ischemic ARF was significantly decreased after anti-CX3CR1 antibody treatment. To determine the role of macrophages in ischemic ARF, macrophages in the kidney were depleted using liposomal-encapsulated clodronate (LEC). LEC resulted in significant functional and histological protection against ischemic ARF. In summary, in ischemic ARF, 1) there is upregulation of CX3CL1 protein in the kidney, specifically in blood vessels; 2) CX3CR1 inhibition using a specific antibody is partially protective and is associated with reduced macrophage infiltration in the kidney; and 3) macrophage depletion in the kidney is protective.
Inflammatory mechanisms contribute to cisplatin-induced acute renal failure (CisARF). Our first aim was to determine renal macrophage infiltration in CisARF. A more than 2-fold increase in CD11b-positive macrophages in the kidney on day 2 preceded the increase in blood urea nitrogen (BUN) and serum creatinine (SCr). Our next aim was to determine the chemoattractant for macrophage infiltration in CisARF. Fractalkine (CX 3 CL1) is expressed on activated endothelial cells and is a potent chemoattractant for macrophages that express its receptor (CX 3 CR1). Immunoblotting showed that whole-kidney CX 3 CL1 expression on days 1, 2, and 3 after cisplatin administration was increased. On immunofluorescence, the intensity of renal endothelial staining of CX 3 CL1 in blood vessels was significantly increased on day 2. Circulating von Willebrand factor (vWF), a measure of systemic endothelial injury, was increased on day 2. Next we determined whether macrophages played an injurious role in CisARF. Macrophages were depleted with injections of liposome-encapsulated clodronate (LEC). LEC resulted in a decrease in renal CD11b-positive macrophages on day 3. However, LEC-treated mice were not protected from CisARF on day 3. To determine the role of CX 3 CR1, both a specific anti-CX 3 CR1 antibody and CX 3 CR1
Background: Inflammation is thought to play a role in ischemic acute kidney injury (AKI). We have demonstrated that macrophage and dendritic cell depletion, using liposome-encapsulated clodronate (LEC), is protective against ischemic AKI. Methods: To determine whether macrophages or dendritic cells or both play a role in ischemic AKI, we performed ischemic AKI in CD11b-DTR mice that have a diphtheria toxin (DT)-induced depletion of CD11b cells (macrophages) and CD11c-DTR mice that have a DT-induced depletion of CD11c cells (dendritic cells). Results: While LEC-treated animals had a significant functional protection from AKI, CD11b-DTR and CD11c-DTR mice were not protected against AKI despite a similar degree of renal macrophage and dendritic cell depletion. Proinflammatory cytokines are known to play a role in ischemic AKI. To determine the possible reasons for the lack of protection in CD11b-DTR and CD11c-DTR mice compared to LEC-treated mice, 32 cytokines/chemokines were measured in these mice. Of the cytokines/chemokines measured, IL-6, MCP-1, GMCSF, IL-1β and CXCL1 (also known as IL-8 in humans or KC in mice) showed significant differences in the LEC-treated, CD11b-DTR and CD11c-DTR mice. MCP-1 and CXCL1 (known mediators of AKI), and also GMCSF and IL-1β were increased in AKI and decreased in LEC-treated AKI but not AKI in CD11b-DTR or CD11c-DTR mice. Conclusions: These findings suggest that LEC-mediated protection from AKI is not simply mediated by depletion of renal macrophage or dendritic cell subpopulations. Protection against AKI in LEC-treated compared to CD11b-DTR or CD11c-DTR mice may be partially explained by differences in proinflammatory cytokine profiles.
IL-18 function is neutralized in IL-18 binding protein transgenic (IL-18BP Tg) mice. First, we determined whether IL-18BP Tg mice are protected against ischemic acute kidney injury (AKI). Ischemic AKI was induced by bilateral renal pedicle clamping. IL-18BP Tg mice were functionally and histologically protected against ischemic AKI as determined by blood urea nitrogen, serum creatinine, and acute tubular necrosis score. We have demonstrated that the injurious effect of IL-18 in the kidney is independent of neutrophils and lymphocytes. Thus the effect of IL-18 inhibition on renal macrophage infiltration was determined. The number of macrophages was significantly reduced in IL-18BP Tg compared with wild-type kidneys. To determine the cytokines and chemokines that are dependent on IL-18, we performed flow cytometry based assays. Multiple chemokines/cytokines, IL-3, IL-6, IL-15, IL-18, leukemia inhibitory factor, macrophage colony-stimulating factor, macrophage inflammatory protein-2, granulocyte-macrophage colony-stimulating factor, and monocyte chemotactic protein-1 were significantly increased in AKI vs. sham kidneys. Only CXCL1 (also known as KC or IL-8) was significantly increased in AKI vs. sham kidneys and significantly reduced in IL-18BP Tg AKI vs. wild-type AKI kidneys. To determine whether macrophages are the source of CXCL1 in the kidney, we depleted macrophages with liposomal encapsulated clodronate. CXCL1 was significantly decreased in macrophage-depleted vs. control AKI mice. In summary, in ischemic AKI in mice, 1) IL-18BP Tg mice are functionally and histologically protected, 2) macrophage infiltration in the kidney and CXCL1 are significantly reduced in IL-18BP Tg mice, and 3) macrophage depletion significantly reduces CXCL1 in the kidney. In conclusion, protection against ischemic AKI in IL-18BP Tg mice is associated with less macrophage infiltration and less production of CXCL1 in the kidney.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.