1-Methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) causes degeneration of the dopaminergic nigrostriatal pathway in several animal species, including humans, monkeys and mice. Changes observed after MPTP administration include marked decrements in the neostriatal content of dopamine and its major metabolites, dihydroxyphenylacetic acid and homovanillic acid, and a greatly diminished capacity of neostriatal synaptosomes to take up 3H-dopamine. In contrast, there is no pronounced loss of serotonin in the neostriatum or of dopamine and its metabolites in other brain areas in MPTP-treated animals. The oxidative metabolism of MPTP to 1-methyl-4-phenyl pyridine, a positively charged species, has been suggested as a critical feature in the neurotoxic process. Moreover, in rat brain preparations, the monoamine oxidase (MAO) inhibitor pargyline and the specific MAO-B inhibitor deprenil can prevent the formation of 1-methyl-4-phenyl-pyridine from MPTP, while the specific MAO-A inhibitor clorgyline has no such effect, suggesting that MAO, and specifically MAO-B, is responsible for the oxidative metabolism of MPTP. We now report that pargyline, nialamide and tranylcypromine, which inhibit both MAO-A and MAO-B, when administered to mice before MPTP, protect against MPTP-induced dopaminergic neurotoxicity. Deprenil is also protective, but clorgyline is not. Our data are consistent with the premise that MAO-B has a crucial role in MPTP-induced degeneration of the nigrostriatal dopaminergic neuronal pathway.
The neurotoxic actions of methamphetamine (METH) may be mediated in part by reactive oxygen species (ROS). Methamphetamine administration leads to increases in ROS formation and lipid peroxidation in rodent brain; however, the extent to which proteins may be modi®ed or whether affected brain regions exhibit similar elevations of lipid and protein oxidative markers have not been investigated. In this study we measured concentrations of TBARs, protein carbonyls and monoamines in various mouse brain regions at 4 h and 24 h after the last of four injections of METH (10 mg/kg/injection q 2 h). Substantial increases in TBARs and protein carbonyls were observed in the striatum and hippocampus but not the frontal cortex nor the cerebellum of METH-treated mice. Furthermore, lipid and protein oxidative markers were highly correlated within each brain region. In the hippocampus and striatum elevations in oxidative markers were signi®cantly greater at 24 h than at 4 h. Monoamine levels were maximally reduced within 4 h (striatal dopamine [DA] by 95% and serotonin in striatum, cortex and hippocampus by 60± 90%). These decrements persisted for 7 days after METH, indicating effects re¯ective of nerve terminal damage. Interestingly, NE was only transiently depleted in the brain regions investigated (hippocampus and cortex), suggesting a pharmacological and non-toxic action of METH on the noradrenergic nerve terminals. This study provides the ®rst evidence for concurrent formation of lipid and protein markers of oxidative stress in several brain regions of mice that are severely affected by large neurotoxic doses of METH. Moreover, the differential time course for monoamine depletion and the elevations in oxidative markers indicate that the source of oxidative stress is not derived directly from DA or 5HT oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.