is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. DOCUMENT AVAILABILITYOnline Access: U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free at OSTI.GOV (http://www.osti.gov/), a service of the US Dept. of Energy's Office of Scientific and Technical Information.
In this study, the feasibility of conducting in silico experiments in near-realtime with anatomically realistic, biophysically detailed models of human cardiac electrophysiology is demonstrated using a current national high-performance computing facility. The required performance is achieved by integrating and optimizing load balancing and parallel I/O, which lead to strongly scalable simulations up to 16,384 compute cores. This degree of parallelization enables computer simulations of human cardiac electrophysiology at 240 times slower than real time and activation times can be simulated in approximately 1 min. This unprecedented speed suffices requirements for introducing in silico experimentation into a clinical workflow.
Firedrake is a new tool for automating the numerical solution of partial differential equations. Firedrake adopts the domain-specific language for the finite element method of the FEniCS project, but with a pure Python runtime-only implementation centered on the composition of several existing and new abstractions for particular aspects of scientific computing. The result is a more complete separation of concerns that eases the incorporation of separate contributions from computer scientists, numerical analysts, and application specialists. These contributions may add functionality or improve performance. Firedrake benefits from automatically applying new optimizations. This includes factorizing mixed function spaces, transforming and vectorizing inner loops, and intrinsically supporting block matrix operations. Importantly, Firedrake presents a simple public API for escaping the UFL abstraction. This allows users to implement common operations that fall outside of pure variational formulations, such as flux limiters.
In Benzi & Olshanskii (SIAM J. Sci. Comput., 28(6) (2006)) a preconditioner of augmented Lagrangian type was presented for the two-dimensional stationary incompressible Navier-Stokes equations that exhibits convergence almost independent of Reynolds number. The algorithm relies on a highly specialized multigrid method involving a custom prolongation operator and for robustness requires the use of piecewise constant finite elements for the pressure. However, the prolongation operator and velocity element used do not directly extend to three dimensions: the local solves necessary in the prolongation operator do not satisfy the inf-sup condition. In this work we generalize the preconditioner to three dimensions, proposing alternative finite elements for the velocity and prolongation operators for which the preconditioner works robustly. The solver is effective at high Reynolds number: on a three-dimensional lid-driven cavity problem with approximately one billion degrees of freedom, the average number of Krylov iterations per Newton step varies from 4.5 at Re = 10 to 3 at Re = 1000 and 5 at Re = 5000. , to thank M. A. Olshanskii for supplying the code for the Oseen solver described in [7], and to thank M. G. Knepley for assistance with PETSc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.