Electrostimulation of electrochemical circuits in the Aloe vera, Mimosa pudica, or Arabidopsis thaliana induces electrotonic potentials propagating along their leaves. The instantaneous increase or decrease in voltage of stimulating potential generates a nonlinear response in plant tissue. Any electrostimulation that is not instantaneous, such as sinusoidal or triangular functions, results in linear responses in the form of small graded potentials. The amplitude and sign of electrotonic potentials depend on the polarity and the amplitude of applied voltage during electrostimulation. The duration of electrotonic potentials does not depend on the amplitude of stimulating voltage. Using the synchronous electrostimulation of a leaf from two different points, we studied the interaction between the electrotonic potentials. If electrical responses with positive fronts collided, they annihilated each other; if an electrical signal with positive front collided with an electrical signal having negative front, they amplified each other. The information gained from this study can be used to elucidate the intracellular and intercellular communications in the form of electrical signals within plants.
Electrostimulation of electrical circuits in the Aloe vera or Arabidopsis thaliana induces electrotonic potentials that propagate along their leaves. The instantaneous increase or decrease in voltage of stimulating potential generates a nonlinear response in plant tissues. Any electrostimulation that is not instantaneous, such as sinusoidal or triangular functions, results in linear responses in the form of small graded potentials. The amplitude and sign of electrotonic potentials depend on the polarity and the amplitude of applied voltage during electrostimulation. Using the synchronous electrostimulation of a leaf from two different points, we studied the interaction between the electrotonic potentials. If electrical responses with positive fronts collided, they annihilated each other; if an electrical signal with positive front collided with an electrical signal having negative front, they amplified each other. The information gained from this study can be used to elucidate the intracellular and intercellular communications in the form of electrical signals within plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.