: We conclude that cAMP agonists stimulate the proliferation of ADPKD but not HKC epithelial cells through PKA activation of the ERK pathway at a locus distal to receptor tyrosine kinase. We suggest that the adenylyl cyclase signaling pathway may have a unique role in determining the rate of cyst enlargement in ADPKD through its actions to stimulate cellular proliferation and transepithelial solute and fluid secretion.
In autosomal dominant polycystic kidney disease (ADPKD), the genetic defect results in the slow growth of a multitude of epithelial cysts within the renal parenchyma. Cysts originate within the glomeruli and all tubular structures, and their growth is the result of proliferation of incompletely differentiated epithelial cells and the accumulation of fluid within the cysts. The majority of cysts disconnect from tubular structures as they grow but still accumulate fluid within the lumen. The fluid accumulation is the result of secretion of fluid driven by active transepithelial Cl- secretion. Proliferation of the cells and fluid secretion are activated by agonists of the cAMP signaling pathway. The transport mechanisms involved include the cystic fibrosis transmembrane conductance regulator (CFTR) present in the apical membrane of the cystic cells and a bumetanide-sensitive transporter located in the basolateral membrane. A lipid factor, called cyst activating factor, has been found in the cystic fluid. Cyst activating factor stimulates cAMP production, proliferation, and fluid secretion by cultured renal epithelial cells and also is a chemotactic agent. Cysts also appear in the intrahepatic biliary tree in ADPKD. Normal ductal cells secrete Cl- and HCO3-. The cystic ductal cell also secretes Cl-, but HCO3- secretion is diminished, probably as the result of a lower population of Cl-/HCO3- exchangers in the apical membrane as compared with the normal cells. Some segments of the normal renal tubule are also capable of utilizing CFTR to secrete Cl-, particularly the inner medullary collecting duct. The ability of Madin-Darby canine kidney cells and normal human kidney cortex cells to form cysts in culture and to secrete fluid and the functional similarities between these incompletely differentiated, proliferative cells and developing cells in the intestinal crypt and in the fetal lung have led us to suggest that Cl- and fluid secretion may be a common property of at least some renal epithelial cells in an intermediate stage of development. The genetic defect in ADPKD may not directly affect membrane transport mechanisms but rather may arrest the development of certain renal epithelial cells in an incompletely differentiated, proliferative stage.
ATP and its metabolites are potent autocrine agonists that act extracellularly within tissues to affect epithelial function. In polycystic kidneys, renal tubules become dilated and/or encapsulated as cysts, creating abnormal microenvironments for autocrine signaling. Previously, our laboratory has shown that high-nanomolar to micromolar quantities of ATP are released from cell monolayers in vitro and detectable in cyst fluids from microdissected human autosomal dominant polycystic kidney (ADPKD) cysts. Here, we show enhanced ATP release from autosomal recessive polycystic kidney (ARPKD) and ADPKD epithelial cell models. RT-PCR and immunoblotting for P2Y G protein-coupled receptors and P2X purinergic receptor channels show expression of mRNA and/or protein for multiple subtypes from both families. Assays of cytosolic Ca2+concentration and secretory Cl− transport show P2Y and P2X purinergic receptor-mediated stimulation of Cl− secretion via cytosolic Ca2+-dependent signaling. Therefore, we hypothesize that autocrine purinergic signaling may augment detrimentally cyst volume expansion in ADPKD or tubule dilation in ARPKD, accelerating disease progression.
Epithelial cells cultured from the renal cysts of patients with autosomal dominant polycystic kidney disease (ADPKD) secrete fluid via a process stimulated by adenosine 3',5'-cyclic monophosphate (cAMP). We have investigated the hypothesis that fluid secretion by these cells is dependent on cAMP-mediated chloride secretion. Individual cultured ADPKD cells were suspended within a polymerized collagen matrix and stimulated to form cysts. Individual cultured cysts were placed in a chamber on the stage of an inverted microscope equipped with epifluorescent and video analysis attachments. The rate of fluid secretion, cell volume and changes in intracellular Cl- were measured. In the absence of secretagogues, fluid was absorbed from the cyst cavity (-2.36 +/- 0.64 nl/min/cm2 inner surface area). 8-Bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) plus 3-isobutyl-1-methlyxanthine (IBMX) induced a rapid reversal in the net movement of fluid to secretion (6.79 +/- 1.28 nl/min/cm2). Bumetanide reversibly reduced fluid secretion to 0.95 +/- 0.60 nl/min/cm2. Cell volume rapidly decreased by 7.5 +/- 0.9% with the initiation of secretion and bumetanide caused an additional loss (4.2 +/- 1.0%). Furosemide had a similar effect on forskolin-induced fluid secretion. Cellular chloride concentration was monitored with the use of the indicator, 6-methoxy-N-ethylquinolinium chloride (MEQ). Removal of Cl- from the bath reduced intracellular [Cl-] (MEQ fluorescence increased by 11.4 +/- 2.3%). In cysts pretreated with furosemide to prevent Cl- entry, the application of forskolin caused a decrease in Cl- concentration (MEQ fluorescence increased by 9.3 +/- 2.6%). Using monolayers of cultured ADPKD cells, grown on permeant supports, we compared the changes in short circuit current (ISC) induced by forskolin in the presence and absence of external Cl-. Forskolin increased ISC (from 8.9 +/- 2.7 to 10.6 +/- 2.7 microA/cm2) in the presence of Cl-, but did not significantly affect ISC in its absence. These data indicate that cultured ADPKD cells can direct fluid transport in either the absorptive or the secretory direction, and that cAMP stimulates secretion and this secretion is accompanied by a net loss of cell solute. Inhibition of secretion by bumetanide or furosemide caused an additional loss of cell solute, including Cl-. The ionic transepithelial current induced by forskolin is dependent on the presence of Cl-. These data support the thesis that chloride secretion drives fluid secretion by cultured ADPKD cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.