The purpose of the present study was to determine the effect on breathing in the awake state of carotid body denervation (CBD) over 1-2 wk after denervation. Studies were completed on adult goats repeatedly before and 1) for 15 days after bilateral CBD (n = 8), 2) for 7 days after unilateral CBD (n = 5), and 3) for 15 days after sham CBD (n = 3). Absence of ventilatory stimulation when NaCN was injected directly into a common carotid artery confirmed CBD. There was a significant (P < 0.01) hypoventilation during the breathing of room air after unilateral and bilateral CBD. The maximum PaCO2 increase (8 Torr for unilateral and 11 Torr for bilateral) occurred approximately 4 days after CBD. This maximum was transient because by 7 (unilateral) to 15 (bilateral) days after CBD, PaCO2 was only 3-4 Torr above control. CO2 sensitivity was attenuated from control by 60% on day 4 after bilateral CBD and by 35% on day 4 after unilateral CBD. This attenuation was transient, because CO2 sensitivity returned to control temporally similar to the return of PaCO2 during the breathing of room air. During mild and moderate treadmill exercise 1-8 days after bilateral CBD, PaCO2 was unchanged from its elevated level at rest, but, 10-15 days after CBD, PaCO2 decreased slightly from rest during exercise. These data indicate that 1) carotid afferents are an important determinant of rest and exercise breathing and ventilatory CO2 sensitivity, and 2) apparent plasticity within the ventilatory control system eventually provides compensation for chronic loss of these afferents.
.-In awake goats, 29% bilateral destruction of neurokinin-1 receptorexpressing neurons in the pre-Bötzinger complex (pre-BötzC) area with saporin conjugated to substance P results in transient disruptions of the normal pattern of eupneic respiratory muscle activation (Wenninger JM, Pan LG, Klum L, Leekley T, Bastastic J, Hodges MR, Feroah T, Davis S, and Forster HV. J Appl Physiol 97: 1620 -1628, 2004). Therefore, the purpose of these studies was to determine whether large or total lesioning in the pre-BötzC area of goats would eliminate phasic diaphragm activity and the eupneic breathing pattern. In awake goats that already had 29% bilateral destruction of neurokinin-1 receptor-expressing neurons in the pre-BötzC area, bilateral ibotenic acid (10 l, 50 mM) injection into the pre-BötzC area resulted in a tachypneic hyperpnea that reached a maximum (132 Ϯ 10.1 breaths/min) ϳ30 -90 min after bilateral injection. Thereafter, breathing frequency declined, central apneas resulted in arterial hypoxemia (arterial PO 2 ϳ40 Torr) and hypercapnia (arterial PCO2 ϳ60 Torr), and, 11 Ϯ 3 min after the peak tachypnea, respiratory failure was followed by cardiac arrest in three airway-intact goats. However, after the peak tachypnea in four tracheostomized goats, mechanical ventilation was initiated to maintain arterial blood gases at control levels, during which there was no phasic diaphragm or abdominal muscle activity. When briefly removed from the ventilator (ϳ90 s), these goats became hypoxemic and hypercapnic. During this time, minimal, passive inspiratory flow resulted from phasic abdominal muscle activity. We estimate that 70% of the neurons within the pre-BötzC area were lesioned in these goats. We conclude that, in the awake state, the pre-BötzC is critical for generating a diaphragm, eupneic respiratory rhythm, and that, in the absence of the pre-BötzC, spontaneous breathing reflects the activity of an expiratory rhythm generator. respiratory rhythm generator; terminal apnea; inspiratory and preinspiratory neurons SMITH ET AL. (21) DEMONSTRATED in the in vitro neonatal rat brain stem preparation that elimination of the pre-Bötzinger complex (pre-BötzC) caused cessation of respiratory rhythm. Since then, results from many in vitro studies support the pre-BötzC as the site or "kernel" of respiratory rhythm generation (9,19,20,21). Furthermore, in in vivo studies on anesthetized cats and rats, injection of the glutamate receptor agonist DL-homocysteic acid into the pre-BötzC area increases tonic and/or phasic phrenic nerve output, whereas injections into other proximal or distal nuclei do not increase respiratory rhythm (1,15,22), thus providing a physiological definition of the preBötzC. In addition, in vivo studies in anesthetized or decerebrate cats or rats demonstrate that lesioning of the pre-BötzC results in transient (24) or irreversible (7, 10, 18) elimination of eupneic respiratory activity. Further demonstrating the importance of the pre-BötzC in control of breathing was a study showing that Ͼ80% destruction o...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.