The hallmark of enzymes from secondary metabolic pathways is the pairing of powerful reactivity with exquisite site selectivity. The application of these biocatalytic tools in organic synthesis, however, remains under-utilized due to limitations in substrate scope and scalability. Here we report the reactivity of a monooxygenase (PikC) from the pikromycin pathway is modified through computationally-guided protein and substrate engineering, and applied to the oxidation of unactivated methylene C-H bonds. Molecular dynamics and quantum mechanical calculations were employed to develop a predictive model for substrate scope, site selectivity, and stereoselectivity of PikC mediated C-H oxidation. A suite of menthol derivatives was screened computationally and evaluated through in vitro reactions where each substrate adhered to the predicted models for selectivity and conversion to product. This platform was also expanded beyond menthol-based substrates to the selective hydroxylation of a variety of substrate cores ranging from cyclic to fused bicyclic and bridged bicyclic compounds.
Macrolactonization of natural product analogs presents a significant challenge to both biosynthetic assembly and synthetic chemistry. In the preceding paper, we identified a thioesterase (TE) domain catalytic bottleneck processing unnatural substrates in the pikromycin (Pik) system, preventing the formation of epimerized macrolactones. Here, we perform molecular dynamics (MD) simulations showing the epimerized hexaketide was accommodated within the Pik TE active site; however, intrinsic conformational preferences of the substrate resulted in predominately unproductive conformations, in agreement with the observed hydrolysis. Accordingly, we engineered the stereospecific Pik TE to yield a variant (TES148C) with improved reaction kinetics and gain-of-function processing of an unnatural, epimerized hexaketide. Quantum mechanical (QM) comparison of model TES148C and TEWT reaction coordinate diagrams revealed a change in mechanism from a stepwise addition-elimination (TEWT) to a lower energy concerted acyl substitution (TES148C), accounting for the gain-of-function and improved reaction kinetics. Finally, we introduced the S148C mutation into a polyketide synthase module (PikAIII-TE) to impart increased substrate flexibility, enabling the production of diastereomeric macrolactones.
Theoretical analysis of the mechanism of the intramolecular hexadehydro-Diels–Alder (HDDA) reaction, validated against prior and newly measured kinetic data for a number of different tethered yne-diynes, indicates that the reaction proceeds in a highly asynchronous fashion. The rate-determining step is bond formation at the alkyne termini nearest the tether, which involves a transition-state structure exhibiting substantial diradical character. Whether the reaction then continues to close the remaining bond in a concerted fashion or in a stepwise fashion (i.e., with an intervening intermediate) depends on the substituents at the remaining terminal alkyne positions. Computational modeling of the HDDA reaction is complicated by the significant diradical character that arises along the reaction coordinate, which leads to instabilities in both restricted singlet Kohn-Sham density functional theory (DFT) and coupled-cluster theory based on a Hartree-Fock reference wave function. A consistent picture emerges, however, from comparison of broken-symmetry DFT calculations and second-order perturbation theory based on complete-active-space self-consistent-field (CASPT2) calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.