Dysfunction of the 140 aa protein ␣-synuclein plays a central role in Lewy body disorders, including Parkinson's disease, as well as in multiple system atrophy. Here, we show that the expression of truncated human ␣-synuclein(1-120), driven by the rat tyrosine hydroxylase promoter on a mouse ␣-synuclein null background, leads to the formation of pathological inclusions in the substantia nigra and olfactory bulb and to a reduction in striatal dopamine levels. At the behavioral level, the transgenic mice showed a progressive reduction in spontaneous locomotion and an increased response to amphetamine. These findings suggest that the C-terminal of ␣-synuclein is an important regulator of aggregation in vivo and will help to understand the mechanisms underlying the pathogenesis of Lewy body disorders and multiple system atrophy.
The effects of 6-hydroxydopamine lesions of the prefrontal cortex in monkeys were investigated on two cognitive tests of prefrontal function, spatial delayed response, and attentional set shifting. The latter test provided a componential analysis of the Wisconsin Card Sort Test, a commonly used clinical test of frontal lobe function in man. Acquisition of a visual compound discrimination requiring a shift of attention from one dimension to another (extradimensional shift), for example, shapes to lines, was significantly improved. This enhancement was behaviorally specific in that there were no effects on acquisition of a discrimination that required the continued maintenance of an attentional set toward one particular dimension (intradimensional shift), nor any effects on a series of visual or spatial discrimination reversals that involved the repeated shifting of responding between two exemplars from the same dimension. In contrast, spatial delayed response performance was impaired, in agreement with previous results. Neurochemical measures showed a marked depletion of dopamine limited to the prefrontal cortex and a smaller loss of prefrontal noradrenaline. This was accompanied by a long-term adaptive change in the striatum such that extracellular dopamine in the caudate nucleus, as measured by in vivo microdialysis, was elevated in response to potassium stimulation as long as 18 months postsurgery. It is proposed that attentional set shifting is mediated by a balanced interaction between prefrontal and striatal dopamine, and that elevated dopamine contributes to the improvement in attentional set-shifting ability. This interpretation is consistent with the impairment in attentional set-shifting ability observed in patients with Parkinson's disease or with damage to the frontal lobes using the same test as used here for infrahuman primates.
Imprinted genes, defined by their preferential expression of a single parental allele, represent a subset of the mammalian genome and often have key roles in embryonic development1, but also post-natal functions including energy homeostasis2 and behaviour3, 4. When the two parental alleles are unequally represented within a social group (when there is sex-bias in dispersal and/or variance in reproductive success)5, 6, imprinted genes may evolve to modulate social behaviour, although to date no such instance is known. Predominantly expressed from the maternal allele during embryogenesis, Grb10 encodes an intracellular adapter protein that can interact with a number of receptor tyrosine kinases and downstream signalling molecules7. Here we demonstrate that within the brain Grb10 is expressed from the paternal allele from fetal life into adulthood and that ablation of this expression engenders increased social dominance specifically among other aspects of social behaviour, a finding supported by the observed increase in allogrooming by paternal Grb10 deficient animals. Grb10 is, therefore, the first example of an imprinted gene that regulates social behaviour. It is also currently alone in exhibiting imprinted expression from each of the parental alleles in a tissue specific manner, as loss of the peripherally expressed maternal allele leads to significant fetal and placental overgrowth. Thus, Grb10 is to date a unique imprinted gene, able to influence distinct physiological processes, fetal growth and adult behaviour, due to actions of the two parental alleles in different tissues.
In a small fraction of mammalian genes--at present estimated at less than 1% of the total--one of the two alleles that is inherited by the offspring is partially or completely switched off. The decision as to which one is silenced depends on which allele was inherited from the mother and which from the father. These idiosyncratic loci are known as imprinted genes, and their existence is an evolutionary enigma, as they effectively nullify the advantages of diploidy. Although they are small in number, these genes have important effects on physiology and behaviour, and many are expressed in the brain. There is increasing evidence that imprinted genes influence brain function and behaviour by affecting neurodevelopmental processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.