High-repetition rate femtosecond lasers are shown to drive heat accumulation processes that are attractive for rapid writing of low-loss optical waveguides in transparent glasses. A novel femtosecond fiber laser system (IMRA America, FCPA muJewel) providing variable repetition rate between 0.1 and 5 MHz was used to study the relationship between heat accumulation and resulting waveguide properties in fused silica and various borosilicate glasses. Increasing repetition rate was seen to increase the waveguide diameter and decrease the waveguide loss, with waveguides written with 1-MHz repetition rate yielding ~0.2-dB/cm propagation loss in Schott AF45 glass. A finite-difference thermal diffusion model accurately tracks the waveguide diameter as cumulative heating expands the modification zone above 200-kHz repetition rate.
We report on waveguide writing in fused silica with a novel commercial femtosecond fiber laser system (IMRA America, FCPA microJewel). The influence of a range of laser parameters were investigated in these initial experiments, including repetition rate, focal area, pulse energy, scan speed, and wavelength. Notably, it was not possible to produce low-loss waveguides when writing with the fundamental wavelength of 1045 nm. However, it was possible to fabricate telecom-compatible waveguides at the second harmonic wavelength of 522 nm. High quality waveguides with propagation losses below 1 dB/cm at 1550 nm were produced with 115 nJ/pulse at 1 MHz and 522 nm.
The generation of cubicon pulses from an Yb fiber chirped pulse amplification system at pulse energies up to 200 microJ is demonstrated. After pulse compression 650 fs pulses with a pulse energy of 100 microJ are obtained, where pulse compression relies on the compensation of third-order dispersion mismatch between the stretcher and compressor via self-phase modulation of the cubicon pulses in the fiber amplifier. Values of self-phase modulation well in excess of pi can be tolerated for cubicon pulses, allowing for the nonlinear compensation of very large levels of dispersion mismatch between pulse stretcher and compressor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.