Patients with metastatic melanoma or multiple myeloma have a dismal prognosis because these aggressive malignancies resist conventional treatment. A promising new oncologic approach uses molecularly targeted therapeutics that overcomes apoptotic resistance and, at the same time, achieves tumor selectivity. The unexpected selectivity of proteasome inhibition for inducing apoptosis in cancer cells, but not in normal cells, prompted us to define the mechanism of action for this class of drugs, including Food and Drug Administration-approved bortezomib. In this report, five melanoma cell lines and a myeloma cell line are treated with three different proteasome inhibitors (MG-132, lactacystin, and bortezomib), and the mechanism underlying the apoptotic pathway is defined. Following exposure to proteasome inhibitors, effective killing of human melanoma and myeloma cells, but not of normal proliferating melanocytes, was shown to involve p53-independent induction of the BH3-only protein NOXA. Induction of NOXA at the protein level was preceded by enhanced transcription of NOXA mRNA. Engagement of mitochondrial-based apoptotic pathway involved release of cytochrome c, second mitochondria-derived activator of caspases, and apoptosis-inducing factor, accompanied by a proteolytic cascade with processing of caspases 9, 3, and 8 and poly(ADP)-ribose polymerase. Blocking NOXA induction using an antisense (but not control) oligonucleotide reduced the apoptotic response by 30% to 50%, indicating a NOXAdependent component in the overall killing of melanoma cells. These results provide a novel mechanism for overcoming the apoptotic resistance of tumor cells, and validate agents triggering NOXA induction as potential selective cancer therapeutics for life-threatening malignancies such as melanoma and multiple myeloma. (Cancer Res 2005; 65(14): 6282-93)
Bortezomib induces remissions in 30%-50% of patients with relapsed mantle cell lymphoma (MCL). Conversely, more than half of patients' tumors are intrinsically resistant to bortezomib. The molecular mechanism of resistance has not been defined. We generated a model of bortezomibadapted subclones of the MCL cell lines JEKO and HBL2 that were 40-to 80-fold less sensitive to bortezomib than the parental cells. Acquisition of bortezomib resistance was gradual and reversible. Bortezomib-adapted subclones showed increased proteasome activity and toler-
Purpose
Chronic Lymphocytic Leukemia (CLL), a malignancy of mature B-cells, is incurable with chemotherapy. Signals from the microenvironment support leukemic cell survival and proliferation, and may confer chemotherapy resistance. ON 01910.Na (Rigosertib) a multikinase PI3K inhibitor is entering phase III trials for myelodysplastic syndrome. Our aim was to analyze the efficacy of ON 01910.Na against CLL cells in vitro and investigate the molecular effects of this drug on tumor biology.
Experimental design
Cytotoxicity of ON 01910.Na against CLL cells from 34 patients was determined in vitro using flow cytometry of cells stained with Annexin V and CD19. Global gene expression profiling on Affymetrix microarrays, flow cytometry, western blotting, and co-cultures with stroma cells were used to delineate ON 01910.Na mechanism of action.
Results
ON 01910.Na induced apoptosis in CLL B-cells without significant toxicity against T-cells or normal B-cells. ON 01910.Na was equally active against leukemic cells associated with a more aggressive disease course (IGHV unmutated, adverse cytogenetics) than against cells without these features. Gene expression profiling revealed two main mechanisms of action: PI3K/AKT inhibition and induction of ROS that resulted in an oxidative stress response through activating protein 1 (AP-1), c-Jun NH2-terminal kinase, and ATF3 culminating in the upregulation of NOXA. ROS scavengers and shRNA mediated knockdown of ATF3 and NOXA protected cells from drug induced apoptosis. ON 01910.Na also abrogated the pro-survival effect of follicular dendritic cells on CLL cells and reduced SDF-1-induced migration of leukemic cells.
Conclusions
These data support the clinical development of ON 01910.Na in CLL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.