Blast-induced traumatic brain injury (TBI) is the signature insult in combat casualty care. Survival with neurological damage from otherwise lethal blast exposures has become possible with body armor use. We characterized the neuropathologic alterations produced by a single blast exposure in rats using a helium-driven shock tube to generate a nominal exposure of 35 pounds per square inch (PSI) (positive phase duration ∼ 4 msec). Using an IACUC-approved protocol, isoflurane-anesthetized rats were placed in a steel wedge (to shield the body) 7 feet inside the end of the tube. The left side faced the blast wave (with head-only exposure); the wedge apex focused a Mach stem onto the rat's head. The insult produced ∼ 25% mortality (due to impact apnea). Surviving and sham rats were perfusion-fixed at 24 h, 72 h, or 2 weeks post-blast. Neuropathologic evaluations were performed utilizing hematoxylin and eosin, amino cupric silver, and a variety of immunohistochemical stains for amyloid precursor protein (APP), glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule 1 (Iba1), ED1, and rat IgG. Multifocal axonal degeneration, as evidenced by staining with amino cupric silver, was present in all blast-exposed rats at all time points. Deep cerebellar and brainstem white matter tracts were most heavily stained with amino cupric silver, with the morphologic staining patterns suggesting a process of diffuse axonal injury. Silver-stained sections revealed mild multifocal neuronal death at 24 h and 72 h. GFAP, ED1, and Iba1 staining were not prominently increased, although small numbers of reactive microglia were seen within areas of neuronal death. Increased blood-brain barrier permeability (as measured by IgG staining) was seen at 24 h and primarily affected the contralateral cortex. Axonal injury was the most prominent feature during the initial 2 weeks following blast exposure, although degeneration of other neuronal processes was also present. Strikingly, silver staining revealed otherwise undetected abnormalities, and therefore represents a recommended outcome measure in future studies of blast TBI.
Explosive blast has been extensively used as a tactical weapon in Operation Iraqi Freedom (OIF) and more recently in Operation Enduring Freedom(OEF). The polytraumatic nature of blast injuries is evidence of their effectiveness,and brain injury is a frequent and debilitating form of this trauma. In-theater clinical observations of brain-injured casualties have shown that edema, intracranial hemorrhage, and vasospasm are the most salient pathophysiological characteristics of blast injury to the brain. Unfortunately, little is known about exactly how an explosion produces these sequelae as well as others that are less well documented. Consequently, the principal objective of the current report is to present a swine model of explosive blast injury to the brain. This model was developed during Phase I of the DARPA (Defense Advanced Research Projects Agency) PREVENT (Preventing Violent Explosive Neurotrauma) blast research program. A second objective is to present data that illustrate the capabilities of this model to study the proximal biomechanical causes and the resulting pathophysiological, biochemical,neuropathological, and neurological consequences of explosive blast injury to the swine brain. In the concluding section of this article, the advantages and limitations of the model are considered, explosive and air-overpressure models are compared, and the physical properties of an explosion are identified that potentially contributed to the in-theater closed head injuries resulting from explosions of improvised explosive devices (IEDs).
The results from this study demonstrate that coagulase-negative as well as coagulase-positive staphylococci isolated from dairy products are capable of genotypic and phenotypic enterotoxigenicity. Furthermore, these data demonstrate that PCR is a sensitive and specific method for screening outbreak isolates regardless of coagulase expression.
Neuronal and glial proteins detected in the peripheral circulating blood after injury can reflect the extent of the damage caused by blast traumatic brain injury (bTBI). The temporal pattern of their serum levels can further predict the severity and outcome of the injury. As part of characterizing a large-animal model of bTBI, we determined the changes in the serum levels of S100B, neuron-specific enolase (NSE), myelin basic protein (MBP), and neurofilament heavy chain (NF-H). Blood samples were obtained prior to injury and at 6, 24, 72 h, and 2 weeks post-injury from animals with different severities of bTBI; protein levels were determined using reverse phase protein microarray (RPPM) technology. Serum levels of S100B, MBP, and NF-H, but not NSE, showed a time-dependent increase following injury. The detected changes in S100B and MBP levels showed no correlation with the severity of the injury. However, serum NF-H levels increased in a unique, rapid manner, peaking at 6 h post-injury only in animals exposed to severe blast with poor clinical and pathological outcomes. We conclude that the sudden increase in serum NF-H levels following bTBI may be a useful indicator of injury severity. If additional studies verify our findings, the observed early peak of serum NF-H levels can be developed into a useful diagnostic tool for predicting the extent of damage following bTBI.
SUMMARYPurpose: Exposure to toxic levels of organophosphorus (OP) nerve agents can lead to seizures, respiratory failure, and, if untreated, death. The cholinesterase inhibitor soman belongs to the class of OP nerve agents and can cause status epilepticus (SE) and brain damage due to neuroexcitotoxicity. In the present study, electroencephalographic seizures are characterized through telemetry implants in rats exposed to soman, followed by treatment with therapeutics similar to those administered after nerve agent exposure. Methods: Cortical electroencephalography (EEG), motor activity and body temperature were recorded continuously for 2 days preexposure and 15 days postexposure to verify the occurrence of spontaneous recurrent seizures (SRS) after soman exposure. Results: Behavioral seizures were monitored and the latency to SE was 7.8 ± 4.0 min after exposure. Among the rats that showed SE, approximately 90% had prolonged seizures within the initial 3 days after soman exposure. Five percent of the rats developed stage 1 seizures, 16% stage 2, 23% stage 3, 18% stage 4, and 38% stage 5. Seventy-nine percent of the rats presented SE and epileptiform-like discharges several days after SE, and 28.9% of those with SE experienced electrographic SRS. The latency to the appearance of SRS ranged from 5-10 days. Fiber degeneration evaluated through silver staining revealed damage in cortical and subcortical areas directly correlated with SE. Discussion: The presence of SRS after seizures induced by soman highlights the importance of quantifying SRS in studies where the objective is to find new therapeutics against soman-induced seizures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.